
Code Generation & Optimization for
Deep-Learning Computations on GPUs
via Multi-Dimensional Homomorphisms
Richard Schulze, Ari Rasch, Sergei Gorlatch

Introduction

We present our work-in-progress code generation and optimization approach for
Deep Learning (DL) computations:

- based on our approach of Multi-Dimensional Homomorphisms (MDH) [IJPP’18]

- achieves high performance for popular DL computations by exploiting the already existing
MDH GPU code generation [PACT’19] & optimization [TACO’20] & execution [JOS’19]
approach

- more expressive than the state-of-the-art DL abstractions (e.g., as provided by
TensorFlow): we show that MDH can express multiple DL computations as a single MDH
expression, enabling optimization across computations (parallelization, tiling, etc.)

A holistic approach toward automatic code generation & optimization & execution
for data-parallel computations:

● We formally define data-parallel computations (linear algebra routines (BLAS), convolutions, …)
as Multi-Dimensional Homomorphisms (MDHs).

● We enable conveniently implementing MDHs by providing a high-level DSL for them.

● We provide a DSL compiler for automatically generating executable low-level code (CUDA, etc) -- the code is
fully automatically optimized (auto-tuned) for the target device and data characteristics (size, layout, etc).

Excursion: MDH in a Nutshell

Behind the scenes:

High-Level MDH Representation Low-Level MDH Representation

● Expresses what to compute,
via algebraic higher-order functions

● Agnostic from hardware and
optimization details

● Expresses how to compute, by explicitly
expressing (de-)composition of computations

● straightforwardly transformable to executable
program code

formally sound,
auto-tunable

lowering process

Excursion: MDH in a Nutshell

The MDH high-level representation at example Matrix Multiplication (MatMul):

MDH pattern instances for MatMul:MDH needs exactly
three higher-order functions (patterns)
to express data-parallel computations:

Excursion: MDH in a Nutshell

Linear Algebra
MatMul<...> = out_view<...>(...) o md_hom<...>(*, (++, ++, +)) o inp_view<...>(...)
MatVec<...> = out_view<...>(...) o md_hom<...>(*, (++, +)) o inp_view<...>(...)
DOT<...> = out_view<...>(...) o md_hom<...>(*, (+)) o inp_view<...>(...)

Stencil Computations
Gaussian_2D<...> = out_view<...>(...) o md_hom(f_G, (++, ++)) o inp_view<...>(...)
Jacobi_3D<...> = out_view<...>(...) o md_hom(f_J, (++, ++, ++)) o inp_view<...>(...)

Data Mining
PRL<...> = out_view<...>(...) o md_hom(weight, (++, Ⓧmax)) o inp_view<...>(...)

Tensor Contractions
TC<...> = out_view<...>(...) o md_hom(*, (++,…,++ , +,…,+)) o inp_view<...>(...)

Important functions can naturally be expressed as MDHs:

Further examples: MLP, SVM, ECC, …, Mandelbrot, Parallel Reduction, ...

Access neighboring elements within
their input buffer

Access user-defined combine operator that
operates on user-defined data type

Often very high dimensional
(e.g., 7 dims)

Excursion: MDH in a Nutshell

MDH proved in previous work
to achieve high performance

on CPUs & GPUs [1]
[1] Rasch, Schulze, Gorlatch. “Generating Portable High-Performance Code via
Multi-Dimensional Homomorphisms.”, PACT’19

Excursion: MDH in a Nutshell

Goal of this Poster

Can MDH also
express DL computations and achieve
good performance results for them?

Our WIP results look encouraging

DL Computations Expressed
in the MDH Formalism

Popular DL computations¹ are conveniently expressed
in the MDH formalism.

¹ Taken from the TensorFlow implementation of the real-world BERT neural network.

DL Computations Expressed
in the MDH Formalism

BERT Subgraph
in TensorFlow

BERT Subgraph
in MDH

Experimental Results

Our preliminary experimental results on NVIDIA V100 GPU show that we can
achieve better performance than well-performing machine- and hand-optimized

approaches on real-world data sizes taken from the BERT neural network.

2.9x faster than TVM

for BiasAddGrad 1.5x faster than TensorFlow for

BiasAddGrad

1.7x faster than TC for

BiasAddGrad

1.1x faster than TVM for BatchMatMul

1.9x faster than TC for BatchMatMul

3.8x faster than TVMfor a subgraph of BERT

4.9x faster than TensorFlow for

a subgraph of BERT1.7x faster than TC

for a subgraph of BERT

Conclusion
MDH for DL— advantages we see:

Future Work:

● Automatizing “DL-subgraph-to-MDH-node” process, by exploiting MDHs’ formal properties;
● Targeting sparse computations;
● Analyzing MDH for DL on further architectures (CPU, etc);
● ...

encouraging
WIP results

MDH targets also
CPUs, etc.

encouraging
WIP results

Thank you for listening!

Code Artifact available: https://gitlab.com/mdh-project/sc21_poster

Richard Schulze
r.schulze@uni-muenster.de

Ari Rasch
a.rasch@uni-muenster.de

https://gitlab.com/mdh-project/sc21_poster

Linear Algebra
MatMul<T|M,N,K> = out_view<T>(C: (i,j,k) -> (i,j)) o md_hom<M,N,K>(*, (++, ++, +)) o inp_view<T,T>(A: (i,j,k) -> (i,k) ,
 B: (i,j,k) -> (k,j))
MatVec<...> = out_view<...>(...) o md_hom<...>(*, (++, +)) o inp_view<...>(...)
DOT<...> = out_view<...>(...) o md_hom<...>(*, (+)) o inp_view<...>(...)

Stencil Computations
Gaussian_2D<T|I,J> = out_view<T>(OUT: (i,j) -> (i,j)) o md_hom(f_G, (++, ++)) o inp_view<T>(IMG: (i,j) -> (i+0,j+0),
 (i,j) -> (i+1,j+0),
 ...,
 (i,j) -> (i+2,j+2))
Jacobi_3D<...> = out_view<...>(...) o md_hom(f_J, (++, ++, ++)) o inp_view<...>(...)

Data Mining
PRL<...> = out_view<...>(...) o md_hom(weight, (++, Ⓧmax)) o inp_view<...>(...)

Tensor Contractions
TC<...> = out_view<...>(...) o md_hom(*, (++,…,++ , +,…,+)) o inp_view<...>(...)

Important functions can naturally be expressed as MDHs:

Further examples: MLP, SVM, ECC, …, Mandelbrot, Parallel Reduction, ...

Excursion: MDH in a Nutshell

Code Generation & Optimization for
Deep-Learning Computations on GPUs
via Multi-Dimensional Homomorphisms
Richard Schulze, Ari Rasch, Sergei Gorlatch

5:45 pm CST: Poster Presentation
5:55 pm CST: Q&A

Please also join us tomorrow at 10:30 am CST in Room 229, session
“Best Research Poster Presentations”

Thank you for listening!

Richard Schulze
r.schulze@uni-muenster.de

Ari Rasch
a.rasch@uni-muenster.de

Please also join us tomorrow at 10:30 am CST in Room 229, session
“Best Research Poster Presentations”

