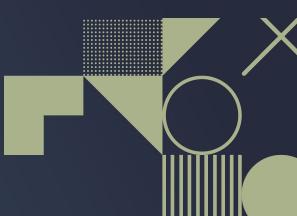
/

Code Generation & Optimization for Deep-Learning Computations on GPUs via Multi-Dimensional Homomorphisms

Richard Schulze, Ari Rasch, Sergei Gorlatch

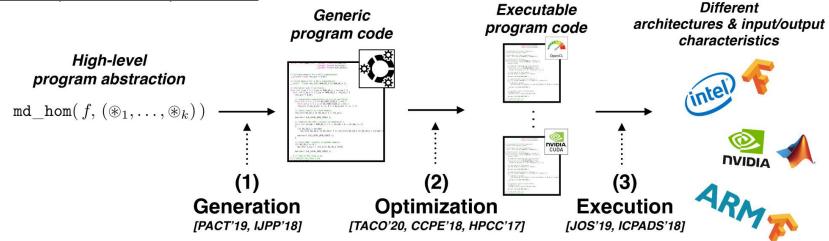


Introduction

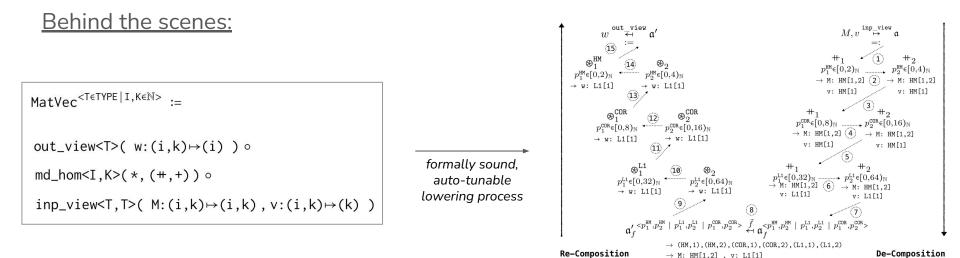
We present our work-in-progress code generation and optimization approach for Deep Learning (DL) computations:

- based on our approach of Multi-Dimensional Homomorphisms (MDH) [JJPP'18]
- achieves **high performance** for popular DL computations by exploiting the already existing MDH GPU code generation *[PACT'19]* & optimization *[TACO'20]* & execution *[JOS'19]* approach
- more expressive than the state-of-the-art DL abstractions (e.g., as provided by TensorFlow): we show that MDH can express multiple DL computations as a single MDH expression, enabling optimization across computations (parallelization, tiling, etc.)

<u>A holistic approach toward automatic code generation & optimization & execution</u> for data-parallel computations:



- We formally define data-parallel computations (linear algebra routines (BLAS), convolutions, ...) as Multi-Dimensional Homomorphisms (MDHs).
- We enable **conveniently** implementing MDHs by providing a **high-level DSL** for them.
- We provide a **DSL compiler** for automatically **generating executable low-level code** (CUDA, etc) -- the code is **fully automatically optimized** (auto-tuned) for the target device and data characteristics (size, layout, etc).



High-Level MDH Representation

- Expresses <u>what</u> to compute, via algebraic higher-order functions
- Agnostic from hardware and optimization details

Low-Level MDH Representation

Scalar Computation

 \rightarrow w: L1[1]

- Expresses <u>how</u> to compute, by explicitly expressing (de-)composition of computations
- straightforwardly transformable to executable program code

The MDH high-level representation at example Matrix Multiplication (MatMul):

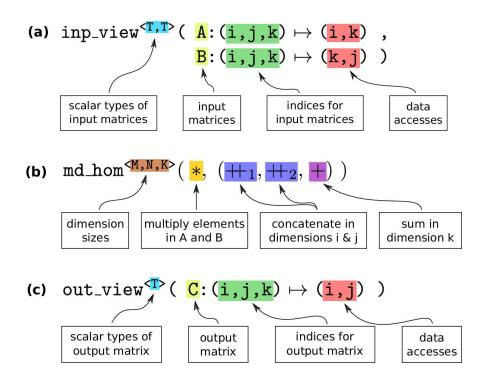
MDH needs exactly three higher-order functions (patterns) to express data-parallel computations:

 $MatMul^{T \in Type | M, N, K \in \mathbb{N}} :=$

$$out_view^{<...>}(...) \circ$$
 (c)

$$md_{hom}^{\langle \ldots \rangle}(\ldots) \circ$$
 (b)

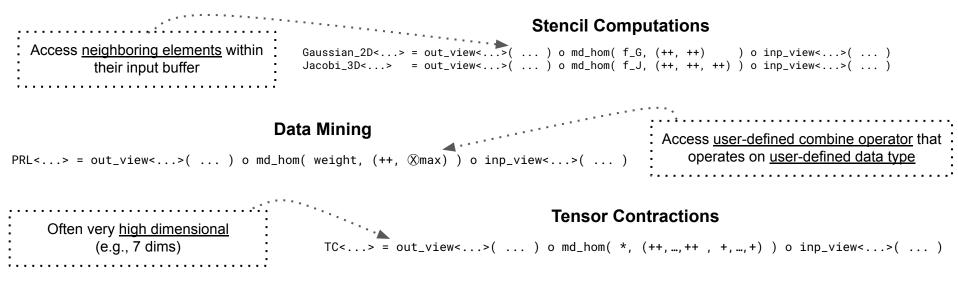
MDH pattern instances for MatMul:



Important functions can naturally be expressed as MDHs:

Linear Algebra

```
MatMul<...> = out_view<...>( ... ) o md_hom<...>( *, (++, ++, +) ) o inp_view<...>( ... )
MatVec<...> = out_view<...>( ... ) o md_hom<...>( *, (++, +) ) o inp_view<...>( ... )
DOT<...> = out_view<...>( ... ) o md_hom<...>( *, (+) ) o inp_view<...>( ... )
```



Further examples: MLP, SVM, ECC, ..., Mandelbrot, Parallel Reduction, ...

Stencils						
СРО	Gaussi	an (2D)	Jacobi (3D)			
CPU	RW	RW PC		PC		
Lift [2]	4.90	5.96	1.94	2.49		
MKL-DNN	6.99	14.31	N/A	N/A		
GPU	Gaussi	an (2D)	Jacobi (3D)			
GPU	RW PC		RW	PC		
Lift [2]	2.33	1.09	1.14	1.02		
cuDNN	3.78	19.11	N/A	N/A		

[2] Hagedorn et. al, "High Performance Stencil Code Generation with LIFT.", **CGO'18** (**Best Paper Award**).

MDH proved in previous work to achieve high performance on CPUs & GPUs [1]

[1] Rasch, Schulze, Gorlatch. "Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms.", PACT'19

Linear Algebra						
CPU	GEN	MN	GEMV			
CPU	RW	PC	RW	РС		
Lift [6]	fails	3.04	1.51	1.99		
MKL	4.22	0.74	1.05	0.87		
GPU	GEI	мм	GEMV			
GPU	RW	PC	RW	PC		
Lift [6]	4.33	1.17	3.52	2.98		
cuBLAS	2.91	0.83	1.03	1.00		

[6] Steuwer et. al, "Lift: A Functional Data-Parallel IR for High-Performance GPU Code Generation", **CGO'17**.

Tensor Contractions									
GPU	Tensor Contractions								
GPO	RW 1	RW 2	RW 3	RW 4	RW 5	RW 6	RW 7	RW 8	RW 9
COGENT [3]	1.26	1.16	2.12	1.24	1.18	1.36	1.48	1.44	1.85
F-TC [4]	1.19	2.00	1.43	2.89	1.35	1.54	1.25	2.02	1.49

[3] Kim et. al. "A Code Generator for High-Performance Tensor Contractions on GPUs.", CGO'19.

[4] Vasilache et al. "The Next 700 Accelerated Layers: From Mathematical Expressions of Network Computation Graphs to Accelerated GPU Kernels, Automatically.", *TACO'19*.

Data Mining							
CPU	Probabilistic Record Linkage						
CPU	2 ¹⁵	2 ¹⁶	2 ¹⁷	2 ¹⁸	2 ¹⁹	2 ²⁰	
EKR [5]	1.87	2.06	4.98	13.86	28.34	39.36	

[5] Forchhammer et al. "Duplicate Detection on GPUs.", HFSL'13.

Goal of this Poster

Can MDH also <u>express</u> DL computations and achieve <u>good performance results</u> for them?

→ Our WIP results look encouraging

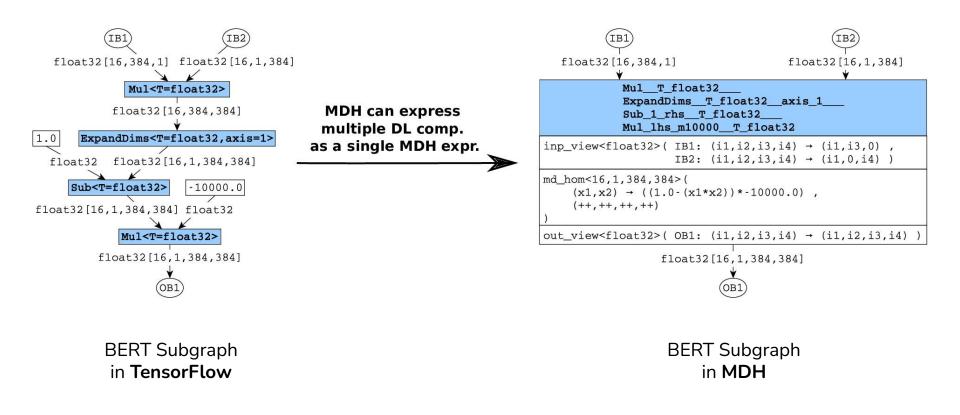
DL Computations Expressed in the MDH Formalism

Operator	out_view ^{<>}		om ^{<>}	inp_view ^{<>}	
Mul<>	$OB1:(i,j) \mapsto (i,j)$	*	# , #	$IB1: (i,j) \mapsto (i,j),$ $IB2: (i,j) \mapsto (i,j)$	
Sub ^{<>}	$OB1:(i,j)\mapsto (i,j)$	2 — 2	# , #	$IB1:(i,j) \mapsto (i,j),$ $IB2:(i,j) \mapsto (i,j)$	
ExpandDims ^{<axis,d∈ℕ ></axis,d∈ℕ >}	$OB1:(i_1,\ldots,i_D)\mapsto(\ldots,i_{axis-1},0,i_{axis},\ldots)$	id	# ,, #	$IB1:(i_1,\ldots,i_D)\mapsto(i_1,\ldots,i_D)$	
BiasAddGrad ^{<nhwc ></nhwc >}	$OB1:(i,j)\mapsto (j)$	id	+,#	$IB1:(i,j)\mapsto (i,j)$	
BatchMatMul ^{<n,n ></n,n >}	$OB1: (b1, b2, i, j, k) \mapsto (b1, b2, i, j)$	*	**,,** , *	$ IB1: (b1, b2, i, j, k) \mapsto (b1, b2, i, k), IB2: (b1, b2, i, j, k) \mapsto (b1, b2, k, j) $	

Popular DL computations¹ are conveniently expressed in the MDH formalism.

¹ Taken from the TensorFlow implementation of the real-world BERT neural network.

DL Computations Expressed in the MDH Formalism



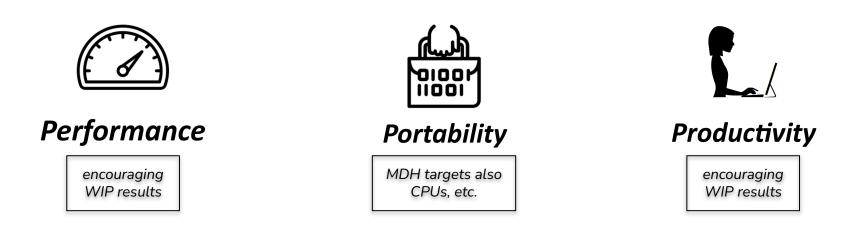
Experimental Results

Our preliminary experimental results on NVIDIA V100 GPU show that we can achieve **better performance** than well-performing **machine-** and **hand-optimized** approaches on real-world data sizes taken from the BERT neural network.

4.9x faster than TensorFLow for **1.9x** faster than **TC** for 1.7× faster than TC 1.7× faster than TC for a subgraph of BERT for a **subgraph of BERT** BatchMatMul BiasAddGrad

Conclusion

MDH for DL— advantages we see:



Future Work:

- Automatizing "DL-subgraph-to-MDH-node" process, by exploiting MDHs' formal properties;
- Targeting sparse computations;
- Analyzing MDH for DL on **further architectures** (CPU, etc);

• ...

Thank you for listening!

Richard Schulze r.schulze@uni-muenster.de Ari Rasch a.rasch@uni-muenster.de

Important functions can naturally be expressed as MDHs:

Linear Algebra

```
MatMul<T|M,N,K> = out_view<T>( C: (i,j,k) -> (i,j) ) o md_hom<M,N,K>( *, (++, ++, +) ) o inp_view<T,T>( A: (i,j,k) -> (i,k) ,
B: (i,j,k) -> (k,j) )
MatVec<...> = out_view<...>( ... ) o md_hom<...>( *, (++, +) ) o inp_view<...>( ... )
DOT<...> = out_view<...>( ... ) o md_hom<...>( *, (++, +) ) o inp_view<...>( ... )
```

Stencil Computations

Gaussian_2D<T|I,J> = out_view<T>(OUT: (i,j) -> (i,j)) o md_hom(f_G, (++, ++)) o inp_view<T>(IMG: (i,j) -> (i+0,j+0), (i,j) -> (i+1,j+0), ..., (i,j) -> (i+1,j+0), ..., (i,j) -> (i+2,j+2)) Jacobi_3D<...> = out_view<...>(...) o md_hom(f_J, (++, ++, ++)) o inp_view<...>(...)

Data Mining

PRL<...> = out_view<...>(...) o md_hom(weight, (++, @max)) o inp_view<...>(...)

Tensor Contractions

TC<...> = out_view<...>(...) o md_hom(*, (++,...,++ , +,...,+)) o inp_view<...>(...)

Further examples: MLP, SVM, ECC, ..., Mandelbrot, Parallel Reduction, ...

5:45 pm CST: Poster Presentation 5:55 pm CST: Q&A

Please also join us tomorrow at 10:30 am CST in Room 229, session "Best Research Poster Presentations"

via Multi-Dimensional Homomorphisms

<u>Richard Schulze</u>, Ari Rasch, Sergei Gorlatch

Thank you for listening!

Richard Schulze r.schulze@uni-muenster.de Ari Rasch a.rasch@uni-muenster.de

Please also join us tomorrow at 10:30 am CST in Room 229, session "Best Research Poster Presentations"