
Performance, Portability, and Productivity
for Data-Parallel Computations

on Multi- and Many-Core Architectures

1 MOTIVATION
Providing performance, portability, and productivity for data-parallel
computations on state-of-the-art parallel architectures and varying
input data sizes is challenging. For example, for high performance,
the programmer has to optimize its source code for the hardware
of modern parallel devices, e.g., Intel multi-core CPU or NVIDIA
many-core GPU which are characterized by deep and complex core
and memory hierarchies. For portable performance over such ar-
chitectures – i.e., the same source code achieves a consistent level
of high performance over di�erent architectures – the program-
mer has to consider that architectures may di�er signi�cantly in
their characteristics, e.g., the number of cores and size of caches.
Moreover, performance portability also has to be ensured over
di�erent input sizes: for example, a high-performance implemen-
tation of matrix multiplication on traditional big, power-of-two
input sizes is programmed fundamentally di�erently as compared
to matrix multiplication on small, irregularly-shaped input matrices
as currently used in deep learning. Furthermore, modern architec-
tures are usually programmed on a low level, e.g., in OpenCL – an
emerging de-facto standard for uniformly programming di�erent
architectures, such as CPU and GPU – which severely decreases
programming productivity for such architectures: the programmer
has to explicitly deal with complex index computations, manage
synchronization, mange thread ids and memory indices on di�erent
core/memory layers, etc.

We provide an approach to address all the aforementioned chal-
lenges – performance, portability, and productivity – for our class of
data-parallel computations to which we refer as Multi-Dimensional
Homomorphisms (MDHs):

(1) We de�ne MDHs formally [13] as a class of functions that
cover important data-parallel computations, e.g., linear al-
gebra routines (BLAS), stencil computations, data mining
algorithms, and tensor contractions.

(2) We enable conveniently expressing MDHs by introducing a
high-level Domain-Speci�c Language (DSL) for them [13].

(3) We provide a DSL compiler to generate OpenCL program
code from expressions in our DSL [2]. We generate our
OpenCL code as fully automatically optimizable (auto-tunable) –
for each arbitrary combination of an MDH function, target

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

architecture, and input size – by generating the code as tar-
geted to the OpenCL’s abstract device models (rather than a
particular architecture) and as parametrized in the models’
performance-critical parameters, e.g., the number of threads
and size of tiles on di�erent core/memory layers.

(4) We provide our own general-purpose Auto-Tuning Frame-
work (ATF) [12] to automatically choose optimized values of
our code’s parameters – for any arbitrary combination of an
architecture and input size.

We show that with our MDH+ATF approach, we often reach sig-
ni�cantly better performance than state-of-the-practice performance-
portable approaches (e.g., the popular Lift framework [15]) and
competitive or even better performance than hand-optimized ap-
proaches, e.g., the assembly-optimized, vendor-provided libraries
Intel MKL and NVIDIA cuBLAS for linear algebra routines (BLAS).

2 APPROACH
In our approach, we generate code for MDHs [13] which are for-
mally de�ned as follows: Let T and T 0 be two arbitrary data types.
A function h : T [N1] . . . [Nd] ! T 0 on d-dimensional arrays
of size N1 ⇥ . . . ⇥ Nd and with elements in T is called a Multi-
Dimensional Homomorphism (MDH) i� there exist combine operators
~1, . . . , ~d : T 0 ⇥ T 0 ! T 0, such that for each integer k 2 [1,d]
and arbitrary, concatenated input array a ++k b in dimension k , the
homomorphic property is satis�ed: h(a ++k b) = h(a) ~k h(b).
In words: the value of h on a concatenated array in dimension k
can be computed by applying h to the array’s parts a and b and
combining the results afterwards by using combine operator ~k .

We express MDHs in our DSL using our md_hom parallel pat-
tern [13] which we de�ne as follows. Every MDH h is uniquely de-
termined by its combine operators ~1, . . . , ~d and its behavior f on
scalar values (i.e., f (a[0] . . . [0]) = h(a) for every a 2 T [1] . . . [1]).
This enables expressing h using our md_hom higher-order function
(a.k.a. parallel pattern) which takes these functions as parameters:

h = md_hom(f , (~1, . . . , ~d))
For example, matrixmultiplication MatMul is expressed using md_hom
as follows:

md_hom(⇤, (++, ++, +)) � view(A,B)(i,j,k)(A[i,k],B[k,j])
Here, view is the second pattern of our DSL, which we use to
uniformly prepare a domain-speci�c input for md_hom. For MatMul,
function view takes as input the two matrices A,B and the array
indices i,j,k; it yields the pair (A[i][k], B[k][j]) which is
used as input for GEMM’s scalar function f = ⇤.

We generate OpenCL code for MDHs which are expressed in
our DSL via patterns md_hom and view (we have embedded both in
C++ in form of functions of a programming library [2]). A major
feature of our OpenCL code is that we generate it as targeted to

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

the OpenCL’s abstract device models and as parameterized in these
models’ performance-critical parameters; this allows automatically
optimizing our code for any particular combination of an architec-
ture and input size using classical auto-tuning. For example, our
code is parameterized in the number of threads and the size of
tiles – on both layers of OpenCL’s core and memory layers and in
all dimensions of the multi-dimensional input.

To determine optimized values of our code’s performance-critical
parameters (a.k.a. tuning parameters), we provide our own general-
purpose Auto-Tuning Framework (ATF) [12] which has a major-
advantage over the state-of-the-art general-purpose auto-tuning
approaches [1, 9, 11, 17]: it enables auto-tuning programs with
interdependent tuning parameters. For example, in our generated
code, we auto-tune the size of tiles on di�erent memory layers, and
a tile size on a lower memory layer has to be smaller or equal than
a tile size on an upper layer, because a lower-layer tile is a chunk
of an upper-layer tile – this can be conveniently expressed in our
ATF approach, and ATF can e�ciently generate, store, and explore
the search space of such interdependent tuning parameters, which
is not possible with the other state-of-the-art general-purpose auto-
tuning frameworks.

3 EXPERIMENTAL EVALUATION
We experimentally evaluate our MDH+ATF approach using com-
putations from four important areas: 1) GEneral Matrix-Matrix
multiplication (GEMM) and GEneral Matrix-Vector multiplication
(GEMV) from the area of linear algebra (BLAS), 2) Gaussian2D
convolution and Jacobi3D which are stencil computations, 3) Prob-
abilistic Record Linkage (PRL) which is important in data mining,
and 4) tensor contractions which are essential in machine learning.
For evaluation, we use a dual-socket system equipped with two
Intel Xeon E5-2640 v2 8-core CPUs and an NVIDIA Tesla V100-
SXM2-16GB GPU.

We compare the performance of our automatically generated and
auto-tuned OpenCL code on Intel CPU and NVIDIA GPU against
several state-of-the-practice approaches: 1) Lift [15] – an academic
framework – which is closely related to our approach and has
proven to provide high, portable performance for BLAS and stencil
computations [4, 16]; 2) Intel MKL/MKL-DNN [6, 7] and NVIDIA
cuBLAS/cuDNN [5, 10] – vendor-provided BLAS libraries – which
are optimized by hand at the assembly level to provide highest
performance for BLAS (MKL and cuBLAS) or Gaussian stencils
(MKL-DNN and cuDNN) on Intel or NVIDIA hardware, correspond-
ingly; 3) EKR [14] – the original JAVA implementation from the
largest cancer registry in Europe for Probabilistic Record Link-
age – an important application in data mining; 4) COGENT [8]
and Facebook’s Tensor Comprehensions [18] for high-performance
tensor contractions on NVIDIA GPUs.

For a challenging comparison, we use i) real-world input sizes
(abbreviated by RW in the following), e.g., taken from the state-of-
the-art deep-learning framework Ca�e [19]; for example, we use
for GEMM’sM ⇥K and K ⇥ N input matrices a size of (M,N ,K) =
(10, 500, 64) which is repeatedly called in Ca�e’s siamese sample,
and ii) input sizes that are preferable for our competitors (abbrevi-
ated by PC), e.g., big, square, power-of-two input matrices of size
1024 ⇥ 1024 in case of GEMM for which Lift, MKL and cuBLAS are

RW PC RW PC

M
DH 1.00 1.00 1.00 1.00

Li
ft fails 3.04 1.51 1.99

M
KL 4.22 0.74 1.05 0.87

CPU
GEMM GEMV

RW PC RW PC

M
DH 1.00 1.00 1.00 1.00

Li
ft 4.33 1.17 3.52 2.98

cu
BL
S

2.91 0.83 1.03 1.00

GPU
GEMM GEMV

Figure 1: Speedup of our automatically generated and auto-
tuned code for linear algebra routines (BLAS) on Intel CPU
(left) and NVIDIA GPU (right).

RW PC RW PC

M
DH 1.00 1.00 1.00 1.00

Li
ft 4.90 5.96 1.94 2.49

M
KL 6.99 14.31 N/A N/A

Gaussian (2D) Jacobi (3D)
CPU

RW PC RW PC

M
DH 1.00 1.00 1.00 1.00

Li
ft 2.33 1.09 1.14 1.02

cu
DN

N

3.78 19.11 N/A N/A

Gaussian (2D) Jacobi (3D)
GPU

Figure 2: Speedup of our automatically generated and auto-
tuned code for stencil computations on Intel CPU (left) and
NVIDIA GPU (right).

2¹⁵ 2¹⁶ 2¹⁷ 2¹⁸ 2¹⁹ 2²⁰

M
DH 1.00 1.00 1.00 1.00 1.00 1.00

EK
R 1.87 2.06 4.98 13.86 28.34 39.36

Probabilistic Record Linkage

Figure 3: Speedup of our automatically generated and auto-
tuned code for Probabilistic Record Linkage (PRL) on Intel
multi-core CPU.

RW 1 RW 2 RW 3 RW 4 RW 5 RW 6 RW 7 RW 8 RW 9

M
DH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CG
N

T

1.26 1.16 2.12 1.24 1.18 1.36 1.48 1.44 1.85

F-
TC 1.19 2.00 1.43 2.89 1.35 1.54 1.25 2.02 1.49

Tensor Contractions

Figure 4: Speedup of our automatically generated and auto-
tuned code for Tensor Contractions on NVIDIA GPU.

highly optimized. For EKR, we use di�erent power-of-two input
sizes, and for tensor contractions, we use the 9 original RW sizes
from [8].

For a fair comparison, in all experiments, we use exactly the same
auto-tuning time of our competitors. For example, we auto-tune
our stencil kernels for 5h which is exactly the same auto-tuning
time that Lift uses for its stencil kernels.

Our experimental results are depicted in Figures 1-4. Our good
results are because our generated OpenCL code can be auto-tuned
for both core and memory layers of OpenCL’s device models and
in all dimensions of the multi-dimensional input.

A detailed discussions of our results can be found in [2, 3].

Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Jason Ansel et al. 2014. OpenTuner: An Extensible Framework for Program

Autotuning (PACT). 303–316.
[2] A.Rasch et al. 2019. Generating Portable High-Performance Code using Multi-

Dimensional Homomorphisms. In 2019 International Conference on Parallel Ar-
chitecture and Compilation Techniques (PACT). (accepted).

[3] Artifact Implementation. 2019. https://github.com/mdh-project/sc19-md-hom.
[4] Bastian Hagedorn et al. 2018. High Performance Stencil Code Generation with

Lift (CGO). 100–112.
[5] Intel. 2018. CUDA® Deep Neural Network library. https://developer.nvidia.

com/cudnn
[6] Intel. 2018. Math Kernel Library for Deep Learning

Networks. https://software.intel.com/en-us/articles/
intel-mkl-dnn-part-1-library-overview-and-installation

[7] Intel. 2019. Math Kernel Library. https://software.intel.com/en-us/mkl
[8] Jinsung Kim et al. 2019. A Code Generator for High-performance Tensor Con-

tractions on GPUs (CGO). 85–95.
[9] Cedric Nugteren et al. 2015. CLTune: A Generic Auto-Tuner for OpenCL Kernels

(MCSOC). 195–202.
[10] NVIDIA. 2019. cuBLAS library. https://developer.nvidia.com/cublas
[11] Philip Pfa�e et al. 2019. E�cient Hierarchical Online-autotuning: A Case Study

on Polyhedral Accelerator Mapping (ICS). 354–366.
[12] Ari Rasch et al. 2018. ATF: A Generic, Directive-Based Auto-Tuning Framework.

Concurrency and Computation: Practice and Experience, 13 pp.
[13] Ari Rasch and Sergei Gorlatch. 2018. Multi-dimensional Homomorphisms and

Their Implementation in OpenCL. International Journal of Parallel Programming,
101–119.

[14] Ari Rasch, Richard Schulze, Waldemar Gorus, Jan Hiller, Sebastian Bartholomäus,
and Sergei Gorlatch. 2019. High-performance Probabilistic Record Linkage via
Multi-dimensional Homomorphisms. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19). ACM, New York, NY, USA, 526–533.
https://doi.org/10.1145/3297280.3297330

[15] Michel Steuwer et al. 2015. Generating Performance Portable Code Using Rewrite
Rules (ICFP). 205–217.

[16] Michel Steuwer et al. 2016. Matrix Multiplication Beyond Auto-tuning: Rewrite-
based GPU Code Generation (CASES). 15 pp.

[17] Ben van Werkhoven. 2019. Kernel Tuner: A search-optimizing GPU code auto-
tuner. Future Generation Computer Systems (2019), 347 – 358.

[18] Nicolas Vasilache et al. 2018. Tensor Comprehensions: Framework-Agnostic
High-Performance Machine Learning Abstractions. CoRR abs/1802.04730 (2018).
arXiv:1802.04730

[19] Yangqing Jia et al. 2014. Ca�e: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093, 4 pp.

https://github.com/mdh-project/sc19-md-hom
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
https://software.intel.com/en-us/mkl
https://developer.nvidia.com/cublas
https://doi.org/10.1145/3297280.3297330
http://arxiv.org/abs/1802.04730

	1 Motivation
	2 Approach
	3 Experimental Evaluation
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

