[

WILHELMS-UNIVERSITAT
P———————————_— Ny g

High-Performance
Probabilistic Record Linkage
via Multi-Dimensional Homomorphisms

Ari Rasch, Richard Schulze, Waldemar Gorus,
Jan Hiller, Sebastian Bartholom&aus, and Sergei Gorlatch

University of Miinster, Germany
Epidemiological Cancer Registry North Rhine-Westphalia (NRW), Germany

Motivation

Probabilistic Record Linkage (PRL) is the problem of identifying data records, e.g., in a
database, that belong to the same real-world entity:

First Name: Marie First Name: Mary.
Last Name: Smith Last Name: Smith

PRL is used in many important areas such as the management of: hospitals, universities,
and intelligence agencies.

PRL has proven to very effective, but -

In this work, we provide an implementation of PRL that:

» provides high performance,
» is portable over different architectures (e.g., multi-core CPU, GPU, ...).
Our implementation is based on our approach of Multi-Dimensional Homomorphisms.

Focus on a real-world case study — PRL as used in Epidemiological Cancer Registry,
Germany.

Agenda

1. Probabilistic Record Linkage (PRL)

2. Multi-Dimensional Homomorphisms (MDH)

3. PRL as MD

4. Using MDH Approach for Parallel PRL Implementation

5. Experimental Results.

Probabilistic Record Linkage

- PRL’s basic idea is to use so-called matching weightsw(a,b) of records a and b to
identify duplicates.

-+ Matching weights are real numbers (typically between 1 and 100) that indicate the
similarity between a and b:

> w(a,b) > UPPER_BOUND - duplicate

» w(a,b) < LOWER_BOUND - no duplicate
» LOWER_BOUND = w(a,b) = UPPER_BOUND - maybe duplicates (human review!)

Question: How is matching weight defined?

[1] Fellegi, Ivan P., and Alan B. Sunter. "A Theory For Record Linkage." Journal of the American Statistical Association 64,
no. 328 (1969): pp. 1183-1210 4

Probabilistic Record Linkage

Matching weight w(a, b) is based on matching/unmatching probabilities of records a and b:

Matching Probability Unmatching Probability
m¥(a,b) =P(a; =b; =z | (a,b) € M)| |u;(a,b) =P(a; =b;=x | (a,0) €U)

Probability of: Probability of:

e a and b refer to same real-world entity e aand b refer NOT to same real-world entity
 a and b coincide in attribute i (e.g., last name)| |+ a and b coincide in attribute i (e.g., last name)
 attribute i is equal to x e attribute i is equal to x

Example:

- Last name “Dijkstra” has a low frequency.
- Last name “Smith” has a high frequency.

= MiastnamePl) kstra(a’ b) > mlastnamesmith(a; b) and
UlastnamePiikstra(a,b) < UtastnameS™ith(a,b)

Probabilistic Record Linkage

The matching weight in the i-th attribute is computed as:

(log (a7 a; =bi N = a;
wi(a, b) = < 1im§3(a,b) . L
log(=t (a,b)) ia; Fbi ANz = a;

lllustrative: w_i(a, b) is defined to be high when

- attributes coincide that have high matching probability and
low unmatching probability.

- attributes not coincide that have low matching probability
and high unmatching probability.

The matching weight w(a.b) is:

In words:

“*Mary Dijkstra” and “Marie Dijkstra” are rather duplicates than “Mary Smith” and “Marie
Smith” — last name “Smith” has a higher frequency than last name “Dijkstra”.

Probabilistic Record Linkage

Summary: are records a and b duplicates?

1) C om p ute matcge h | N g Matching Probability Unmatching Probability
probabilities mix and |mi(ab)=Pla=bi=x](ab)eM) |uileb)=Pla=>b=z](ab)el)
unmatchin robabilities |probanility of: Probability of:

p iX * aand b refer to same real-world entity * aand b refer NOT to same real-world entity
* aand b coincide in attribute i (e.g., forename) * aand b coincide in attribute i (e.g., forename)

* attribute i is equal to x * attribute i is equal to x

2.Compute matching () 509(:75((5’5))) ca; = b A = a;
- - - - w?j a’ — im:;ca
\,V\\,Ie;-g(l‘;tsbl)n i-th _attribute Io 9(11 —ufz((a,,l?))) ai# b Az =a
N
3.Compute matching o
weight w(a, b) UJ(CL, b) — E :wi(aab)
1=1

Epidemiological Cancer Registry

In the Epidemiological Cancer Registry (ECR), PRL is used for avoiding duplicate entries in
their patient data base.

Duplicates can occur when same patient is accidentally registered by different registration
offices under different names (e.g., Mary Smith vs. Marie Smith).

PRL in ECR: No. || Attribute m;

- - : 1 || Surname 1 0.975
Patients are represented u§|ng 14 attn.b.utes. 5 | Surmame 2 0975
ECR uses averaged matching probability m; 3 || Surname 3 0.975
(instead of matching probability miX): 4 || Forename 1 0.975

5 || Forename 2 0.975

m; = avg mx 6 Fc.)rename 3 0.975

L l 7 || Birth name 1 0.975

: . : 8 || Birth name 2 0.975

e.g., Mforename IS probability that two records referring to o | Birth name 3 0.975
same real-world entity have same (arbi’Frary) forename 10 || Day of birth 0.99
— this is because data bases with duplicates are rare 11 || Month of birth | 0.99
but required for computing mix. 12 || Year of birth 0.99

13 || Gender 0.999

14 || Municipality key | 0.9

Multi-Dimensional Homomorphisms

Qur approach of Multi-Dimensional Homomorphisms allows to conveniently generate high-
performance code targeting multi- and many-core architectures:

Executable
i program code
meg;re:;r::cOde . Different architectures
High-level program | | _
expression ﬁziﬂ — (lntel>

md_hom(f, (®1,...,®%)) —>

A
: : e
MDH : —
: Auto-Tunin
Code Generation 9 NVIDIA
Representation of important applications in our approach:
Linear Algebra

DOT = md_hom(*, (+)) 0 viewBLAS _
GEMV = md_hom(*, (++, +)) o viewBLAS Tensor Contractions
GEMM = md_hom(*, (++, ++, +)) o viewBLAS

TC = md_hom(*, (++,.,++ , +,..,+)) o viewTC<cD, sD>

Convolutions

md_hom(conv, (++, ++)) o viewStencil<C>
md_hom(conv, (++, ++, ++, ++, +)) o viewStencil<C>

Gaussian
MCC

Speedups up to >4x as compared to state-of-the-art approaches!

9

Multi-Dimensional Homomorphisms

Our goal for PRL: express it as MDH to generate high-performance code for CPU and GPU.

Definition: [Multi-Dimensional Homomorphisms [2] |

Let T and T" be two arbitrary types. A function h : T[Ny1|...[Ng] — T’
on d-dimensional arrays is called a Multi-Dimensional Homomorphism (MDH)
iff there exist combine operators ®1,...,®q4 : 1" x T" — T’, such that for each
k € [1,d] and arbitrary, concatenated input MDA a ++. b:

h(a++rb) = h(a) ® h(b)

Examples (2D):
a1
X X X X h(x X X ><> X X X X X X X X
p | BN | AT L < | =, | e
X X X X T ®)1 X X X X X X X X
X X X X h(x X X ><> X X X X X X X X
a1 ++1 bl AR ao ++9 bQ a b2
b1

[2] Rasch, Ari, and Sergei Gorlatch. "Multi-Dimensional Homomorphisms and Their Implementation in OpenCL."
International Journal of Parallel Programming 46, no. 1 (2018): 101-119. 10

Multi-Dimensional Homomorphisms

MDHs have a uniform representation:

Proposition:

Every MDH h is completely determined by its combine operators ®q ... ®4
and its action f on singleton arrays (i.e., h(a) = f(al0]...al0])).

lllustrative (2D):

hia) =

Definition: [md_hom]

We write
md hom(f, (®1,...,8q))

for the unique d-dimensional homomorphism with combine operators ®1, ..., ®4

and action f on singleton arrays.
11

PRL as MDH

PRL is an MDH — it can be expressed using the md__hom pattern (example ECR):

maXx
>
weight(npl, epl) weight(npD epn) np, : new patient i € {1,...,m}
ep, : existing patient ¢ € {1,...,n}
weight(np, ,ep;) weight(np,,,ep,)| H

1. Build all possible pairs of new patients (1.-dim) and existing patients (2.-dim).

2. Apply function weight to each pair.
3. Combine results 2.-dim by operator max — max. matching weight for each new patient.

4. Combine results 1.-dim by operator ++ — matching weight for all existing patients

PRL =md hom(weight, (+,max)) o cart

12

MDHs in OpenCL

 MDHs can be efficiently implemented for CPU and GPU, e.g., in OpenCL.

e The OpenCl’s models (in a nutshell):

DEV

v
CU

/ N\

PE| ... |PE

PE

Platform Model

e OpenCL has a 3-layered Platform Model (PM).

e PM uniformly abstracts parallel devices (e.g., CPU or GPU).

e PM consists of Compute Units (e.g., cores or SMX) and Processing

Elements (e.g., SIMD units or warps)

13

MDHs in OpenCL

« MDHSs can be efficiently implemented in OpenCL.

e The OpenCl’s models (in a nutshell):

— oy,
—_ —

WG ______ WG/ - = \:‘““‘.‘..‘..‘.:“':‘.T.T.T .
........ | WI "'- Wi :
R annnna . e e Pl |
. . . :......'_‘ E
WGzt WG A CEWI el WEE D
e g i
...... enamaa | . ;
. . |
..... ': I TR AR :------':
WG We W] e LW I
................ |
|\ ___g
scheduled to CUs scheduled to PEs
and use LM and use PM

Execution Model

e Work-Groups (WG) scheduled to CUs.
e Work-Items (WI) scheduled to PEs.

e Number of WGs/WIs have to be chosen as optimized by user for each
target combination of: i) application, ii) architecture, and iii) input size.

14

MDHs in OpenCL

The MDH OpenCL implementation schema for PRL .

@

XX X X X X

XX X X X X
XX X X X X
XX X X X X

(@]
O
O
(@]
O
O
O
O

WG partitioning
—

combine WG
results

D ———

<<
< X< X X
< X< X X

< XX

0 0 0 0 [00 0 (

WG-chunks

A/

™

WG-results

/

~a

< X X X

< X< X X
> XX

/
N\

00 0 0 [00 00

We exploit the algebraic representation of PRL to split the input data for WGs and Wis..

<]
4 WI partitioning

combine WI
results

»

<&
<

O,

=3
J
=2

=3

max

»
»

weight(x) weight(x)
weight(x) weight(x)

|, ©

e Our MDHs’ OpenCL implementation is generic in the number of WGs and Wis.

* This enables automatically optimizing our implementation — for each target
architecture and input size — using auto-tuning.

15

Automatic Performance Tuning

We use our Auto-Tuning Framework (ATF) to automatically chose optimized

values of our performance-critical parameters.

Domain-specific OpenTuner CLTune ATF
auto-tuning

Arbitrary Programming Language v v

Arbitrary Application Domain | v ‘\/ 777777777777777777777777777777777777 v
Arbitrary Tuning Objective v v 1 v
Arbitrary Search Technique v v 1\/ 777777777777777777777777777777777777 v
Interdependent Parameters v v | v
Large Parameter Ranges v v 1 v
Directive-Based Auto-Tuning | | v
Automatic Cost Function Generation v ‘\/ 777777777777777777777777777777777777 v

ATF combines major advantages over state-of-the-art
auto-tuning approaches

[3] Rasch, Ari, and Sergei Gorlatch. "ATF: A Generic, Directive-Based Auto-Tuning Framework." Concurrency and

Computation: Practice and Experience 31 (2019)

16

Experimental Results

—&— EKR A—md_hom (CPU) 0 md_hom (GPU)

1000 (intel®

Intel Xeon E3-1240 CPU

Runtime (min)
on CPU/GPU
ol
o
S

A
A .
0 A O O NVIDIA
215 216 217 28 219 2°° NVIDIA Tesla V100 GPU

Number of new records

Our OpenCL implementation provides speedup >8 on CPU as compared to ECR’s parallel
Java implementation.

This is because it can be automatically optimized (auto-tuned) for the concrete target
hardware.

Our implementation is executable also on GPUs — speedups >80x.
17

Conclusion

We present a high-performance, portable implementation of Probabilistic Record Linkage

(PRL):

- Our implementation targets various parallel architectures (via OpenCL).

- It provides high performance by being automatically optimizable (via auto-tuning) for the
target architecture and input size.

+ Our experiments on the real-world sample of ECR show speedups of over >8x on Intel
multi-core, and >80x on NVIDIA GPU.

Our approach is based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDH).

Questions?

