

High-Performance Probabilistic Record Linkage via Multi-Dimensional Homomorphisms

Ari Rasch, Richard Schulze, Waldemar Gorus, Jan Hiller, Sebastian Bartholomäus, and Sergei Gorlatch

University of Münster, Germany Epidemiological Cancer Registry North Rhine-Westphalia (NRW), Germany

Motivation

• Probabilistic Record Linkage (PRL) is the problem of identifying data records, e.g., in a database, that belong to the same real-world entity:

First Name: Marie Last Name: Smith

First Name: Mary Last Name: Smith ...

- PRL is used in many important areas such as the management of: hospitals, universities, and intelligence agencies.
- PRL has proven to very effective, but
- In this work, we provide an implementation of PRL that:
 - provides high performance,
 - ▶ is portable over different architectures (e.g., multi-core CPU, GPU, ...).
- Our implementation is based on our approach of *Multi-Dimensional Homomorphisms*.
- Focus on a real-world case study PRL as used in Epidemiological Cancer Registry, Germany.

Agenda

- 1. Probabilistic Record Linkage (PRL)
- 2. Multi-Dimensional Homomorphisms (MDH)
- 3. PRL as MDH
- 4. Using MDH Approach for Parallel PRL Implementation
- 5. Experimental Results.

- PRL's basic idea is to use so-called *matching weights* w(a,b) of records a and b to identify duplicates.
- Matching weights are real numbers (typically between 1 and 100) that indicate the similarity between a and b:

```
    w(a,b) > UPPER_BOUND → duplicate
    w(a,b) < LOWER_BOUND → no duplicate</li>
    LOWER_BOUND ≤ w(a,b) ≤ UPPER_BOUND → maybe duplicates (human review!)
```

Question: How is matching weight defined?

Matching weight w(a,b) is based on matching/unmatching probabilities of records a and b:

Matching Probability

$$m_i^x(a,b) = \mathbf{P}(a_i = b_i = x \mid (a,b) \in M)$$

Probability of:

- a and b refer to same real-world entity
- a and b coincide in attribute i (e.g., last name)
- attribute i is equal to x

Unmatching Probability

$$u_i^x(a,b) = \mathbf{P}(a_i = b_i = x \mid (a,b) \in U)$$

Probability of:

- a and b refer <u>NOT</u> to same real-world entity
- a and b coincide in attribute i (e.g., last name)
- attribute i is equal to x

Example:

- Last name "Dijkstra" has a low frequency.
- Last name "Smith" has a high frequency.
 - ⇒ m_{lastname} Dijkstra(a,b) > m_{lastname} Smith(a,b) and u_{lastname} Dijkstra(a,b) < u_{lastname} Smith(a,b)

The *matching weight in the i-th attribute* is computed as:

$$w_{i}(a,b) = \begin{cases} log(\frac{m_{i}^{x}(a,b)}{u_{i}^{x}(a,b)}) & : a_{i} = b_{i} \land x = a_{i} \\ log(\frac{1-m_{i}^{x}(a,b)}{1-u_{i}^{x}(a,b)}) & : a_{i} \neq b_{i} \land x = a_{i} \end{cases}$$

Illustrative: w_i(a,b) is defined to be high when

- attributes coincide that have high matching probability and low unmatching probability.
- attributes not coincide that have low matching probability and high unmatching probability.

The matching weight w(a,b) is:

$$w(a,b) = \sum_{i=1}^{N} w_i(a,b)$$

In words:

"Mary Dijkstra" and "Marie Dijkstra" are rather duplicates than "Mary Smith" and "Marie Smith" → last name "Smith" has a higher frequency than last name "Dijkstra".

Summary: are records a and b duplicates?

1. Compute $\underline{\text{matching}}$ $\underline{\text{probabilities}}$ m_i^x and $\underline{\text{unmatching probabilities}}$ p_i^x

Matching Probability

$$m_i^x(a,b) = \mathbf{P}(a_i = b_i = x \mid (a,b) \in M)$$

Probability of:

- a and b refer to same real-world entity
- a and b coincide in attribute i (e.g., forename)
- attribute i is equal to x

Unmatching Probability

$$u_i^x(a,b) = \mathbf{P}(a_i = b_i = x \mid (a,b) \in U)$$

Probability of:

- a and b refer <u>NOT</u> to same real-world entity
- a and b coincide in attribute i (e.g., forename)
- attribute i is equal to x

2. Compute matching weights in i-th attribute w_i(a,b)

$$w_i(a,b) = \begin{cases} log(\frac{m_i^x(a,b)}{u_i^x(a,b)}) & : a_i = b_i \land x = a_i \\ log(\frac{1-m_i^x(a,b)}{1-u_i^x(a,b)}) & : a_i \neq b_i \land x = a_i \end{cases}$$

3. Compute matching weight w(a,b)

$$w(a,b) = \sum_{i=1}^{N} w_i(a,b)$$

Epidemiological Cancer Registry

- In the <u>Epidemiological Cancer Registry (ECR)</u>, PRL is used for avoiding duplicate entries in their patient data base.
- Duplicates can occur when same patient is accidentally registered by different registration offices under different names (e.g., Mary Smith vs. Marie Smith).

PRL in ECR:

- Patients are represented using 14 attributes.
- ECR uses <u>averaged matching probability m_i</u> (instead of matching probability m_i^x):

$$m_i = \operatorname{avg}_x m_i^x$$

e.g., $m_{forename}$ is probability that two records referring to same real-world entity have same (arbitrary) forename \rightarrow this is because data bases with duplicates are rare but required for computing m_i^x .

No.	Attribute	m_i
1	Surname 1	0.975
$2 \mid$	Surname 2	0.975
3	Surname 3	0.975
4	Forename 1	0.975
5	Forename 2	0.975
6	Forename 3	0.975
7	Birth name 1	0.975
8	Birth name 2	0.975
9	Birth name 3	0.975
10	Day of birth	0.99
11	Month of birth	0.99
12	Year of birth	0.99
13	Gender	0.999
14	Municipality key	0.9

Multi-Dimensional Homomorphisms

Our approach of Multi-Dimensional Homomorphisms allows to conveniently generate highperformance code targeting multi- and many-core architectures:

Representation of important applications in our approach:

Linear Algebra

```
DOT = md_hom( *, (+) ) o viewBLAS

GEMV = md_hom( *, (++, +) ) o viewBLAS

GEMM = md_hom( *, (++, ++, +) ) o viewBLAS

Tensor Contractions

TC = md_hom( *, (++,...,++ , +,...,+) ) o viewTC<cD,sD>
```

Convolutions

Speedups up to >4x as compared to state-of-the-art approaches!

Multi-Dimensional Homomorphisms

Our goal for PRL: express it as MDH to generate high-performance code for CPU and GPU.

<u>Definition:</u> [Multi-Dimensional Homomorphisms [2]]

Let T and T' be two arbitrary types. A function $h: T[N_1] \dots [N_d] \to T'$ on d-dimensional arrays is called a Multi-Dimensional Homomorphism (MDH) iff there exist combine $operators <math>\circledast_1, \dots, \circledast_d: T' \times T' \to T'$, such that for each $k \in [1, d]$ and arbitrary, concatenated input MDA $a \leftrightarrow_k b$:

$$h(a ++_k b) = h(a) \circledast_k h(b)$$

Examples (2D):

[2] Rasch, Ari, and Sergei Gorlatch. "Multi-Dimensional Homomorphisms and Their Implementation in OpenCL." *International Journal of Parallel Programming* 46, no. 1 (2018): 101-119.

Multi-Dimensional Homomorphisms

MDHs have a uniform representation:

Proposition:

Every MDH h is completely determined by its combine operators $\circledast_1 \dots \circledast_d$ and its action f on singleton arrays (i.e., $h(a) = f(a[0] \dots a[0])$).

Illustrative (2D):

$$h(a) = \begin{pmatrix} f(a[0][0]) & \dots & f(a[0][n]) \\ \vdots & & & \vdots \\ f(a[m][0]) & \dots & f(a[m][n]) \end{pmatrix}_{\circledast_1}$$

Definition: [md_hom]

We write

$$\mathtt{md}$$
_ \mathtt{hom} $(f, (\circledast_1, \ldots, \circledast_d))$

for the unique d-dimensional homomorphism with combine operators $\circledast_1, \ldots, \circledast_d$ and action f on singleton arrays.

PRL as MDH

PRL is an MDH — it can be expressed using the md_hom pattern (example ECR):

```
 \begin{array}{c|c} & & \\ \hline \mathbf{max} \\ \hline \mathbf{weight}(\mathbf{np}_1, \mathbf{ep}_1) \\ \hline \mathbf{weight}(\mathbf{np}_1, \mathbf{ep}_n) \\ \hline \\ \mathbf{weight}(\mathbf{np}_m, \mathbf{ep}_1) \\ \hline \\ \mathbf{weight}(\mathbf{np}_m, \mathbf{ep}_n) \\ \hline \\ \hline \end{array} \\ \begin{array}{c} \mathbf{np}_i \colon \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \mathbf{ep}_i \colon \mathbf{existing \ patient} \ i \in \{1, \dots, n\} \\ \hline \\ \mathbf{weight}(\mathbf{np}_m, \mathbf{ep}_n) \\ \hline \end{array} \\ \\ \begin{array}{c} \mathbf{np}_i \colon \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \mathbf{ep}_i \colon \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline \\ \mathbf{new \ patient} \ i \in \{1, \dots, m\} \\ \hline
```

- 1. Build all possible pairs of new patients (1.-dim) and existing patients (2.-dim).
- 2. Apply function weight to each pair.
- 3. Combine results 2.-dim by operator $\max \rightarrow \max$, matching weight for each new patient.
- 4. Combine results 1.-dim by operator ++ → matching weight for all existing patients

$$\mathtt{PRL} = \mathtt{md_hom}(\ \mathtt{weight}, (+\!\!+\!\!+, \mathtt{max})\) \ \circ \ \mathtt{cart}$$

MDHs in OpenCL

MDHs can be efficiently implemented for CPU and GPU, e.g., in OpenCL.

The OpenCL's models (in a nutshell):

- OpenCL has a 3-layered Platform Model (PM).
- PM uniformly abstracts parallel devices (e.g., CPU or GPU).
- PM consists of Compute Units (e.g., cores or SMX) and Processing Elements (e.g., SIMD units or warps)

MDHs in OpenCL

- MDHs can be efficiently implemented in OpenCL.
- The OpenCL's models (in a nutshell):

- Work-Groups (WG) scheduled to CUs.
- Work-Items (WI) scheduled to PEs.
- Number of WGs/WIs have to be chosen as optimized by user for each target combination of: i) application, ii) architecture, and iii) input size.

MDHs in OpenCL

The MDH OpenCL implementation schema for PRL:

We exploit the algebraic representation of PRL to split the input data for WGs and WIs..

- Our MDHs' OpenCL implementation is generic in the number of WGs and WIs.
- This **enables automatically optimizing our implementation** for each target architecture and input size using auto-tuning.

15

Automatic Performance Tuning

We use our **Auto-Tuning Framework (ATF)** to automatically chose optimized values of our performance-critical parameters.

	Domain-specific auto-tuning	OpenTuner	CLTune	ATF
Arbitrary Programming Language		√		V
Arbitrary Application Domain		V	V	V
Arbitrary Tuning Objective	✓	√		V
Arbitrary Search Technique	√	V	V	V
Interdependent Parameters	✓		V	V
Large Parameter Ranges	√	V		V
Directive-Based Auto-Tuning				V
Automatic Cost Function Generation	✓		V	V

ATF combines major advantages over state-of-the-art auto-tuning approaches

Experimental Results

- Our OpenCL implementation provides speedup >8 on CPU as compared to ECR's parallel Java implementation.
- This is because it can be automatically optimized (auto-tuned) for the concrete target hardware.
- Our implementation is executable also on GPUs speedups >80x.

Conclusion

We present a high-performance, portable implementation of Probabilistic Record Linkage (PRL):

- Our implementation targets various parallel architectures (via OpenCL).
- It provides high performance by being automatically optimizable (via auto-tuning) for the target architecture and input size.
- Our experiments on the real-world sample of ECR show speedups of over >8x on Intel multi-core, and >80x on NVIDIA GPU.

Our approach is based on the algebraic formalism of Multi-Dimensional Homomorphisms (MDH).

Questions?