RIGHTS

High-Performance Probabilistic Record Linkage
via Multi-Dimensional Homomorphisms

Ari Rasch
University of Miinster, Germany
arasch@wwu.de

Jan Hiller
Krebsregister NRW, Germany
Jan Hiller@krebsregister.nrw.de

Richard Schulze
University of Miinster, Germany
r.schulze@wwu.de

Sebastian Bartholomaus
Krebsregister NRW, Germany
Sebastian.Bartholomaeus@

Waldemar Gorus
University of Miinster, Germany
w.gorus@wwu.de

Sergei Gorlatch
University of Minster, Germany
gorlatch@wwu.de

krebsregister.nrw.de

ABSTRACT

Probabilistic Record Linkage (PRL) identifies data records referring
to the same real-world entity, e.g., in a database. PRL is increasingly
used in epidemiology centers, intelligence agencies, and univer-
sities. However, PRL is a time-consuming task, which limits its
applicability for large data sets in real-world applications.

We address the problem of accelerating PRL by parallelizing it for
modern high-performance architectures, such as multi-core CPU
and many-core GPU. Our approach relies on the formalism of Multi-
Dimensional Homomorphisms (MDHs) — a class of functions with a
generic parallel implementation in OpenCL. The schema allows for
automatic optimization for a particular target hardware architecture
by exploiting the auto-tuning approach. Our experiments show
that we achieve significantly better performance on both CPU and
GPU - speedups of up to 80 times — as compared to the parallel
implementation of PRL that is currently used by EKR - the largest
cancer registry in Europa.

CCS CONCEPTS

« Applied computing; - Computing methodologies — Paral-
lel computing methodologies;

ACM Reference Format:

Ari Rasch, Richard Schulze, Waldemar Gorus, Jan Hiller, Sebastian Bartho-
lomaéus, and Sergei Gorlatch. 2019. High-Performance Probabilistic Record
Linkage, via Multi-Dimensional Homomorphisms. In The 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19), April 8-12, 2019, Limassol,
Cyprus. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3297280.
3297330

1 MOTIVATION AND RELATED WORK

Record Linkage (RL) [2] (a.k.a. merge/purge processing, fuzzy mat-
ching, duplicate detection, or database hardening) is the problem
of identifying data records, e.g., in a database, that belong to the
same real-world entity. RL is used in many important areas such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC 19, April 8-12, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04.

https://doi.org/10.1145/3297280.3297330

1,

526

the management of: epidemiology centers, hospitals, universities,
and intelligence agencies. For example, in the Epidemiologisches
Krebsregister (EKR) of North Rhine-Westphalia, Germany — the
largest cancer registry in Europe — record linkage is used to avoid
adding duplicate entities to the patient data base. Duplicates can
occur when the same patient is accidentally registered at EKR by
different registration offices under different names; for example,
Mary Smith (office 1) and Marie Smith (office 2).

A high-performance RL algorithm is easily implementable when
entities have unique identifiers (a.k.a. deterministic record lin-
kage [2]), e.g., numerical ids: two entities are considered as equal
(i.e., they are linked) when their ids coincide. However, in most
real-world applications, entities do not have unique identifiers. For
example, in the EKR, patients are represented by 14 non-unique
attributes, so-called Quasi-IDentifiers (QIDs), including patient’s
first and last name, date of birth, and address. This makes duplicate
detection challenging, e.g., because of typos in names (as described
above) and/or changing addresses.

Probabilistic Record Linkage (PRL) [4] is the most prominent
approach to record linkage on QID-represented entities. In PRL, a
so-called matching weight is computed for comparing two records;
the weight indicates: 1) link if it exceeds an upper threshold, 2) non-
link if it is below a lower threshold, and 3) possible-link which has
to be reviewed by a human if it is between the lower and upper
threshold. The basic idea of PRL is to compute the matching weights
based on probabilities — the probabilities are used for comparing
QIDs on the basis of frequency ratios. For example, Mary Dijkstra
and Marie Dijkstra have a higher probability to match than Mary
Smith and Marie Smith, because surname Dijkstra has a lower
frequency than Smith.

PRL has proven to be effective for many application areas [3].
However, PRL is a time-consuming approach, which limits its ap-
plicability for large real-world data sets: e.g., more than 5.4 million
patient records are contained in the EKR’s database, and in the
research on interval carcinoma and early cancer diagnose, up to 1
million records have to be merged with the EKR’s data base, requir-
ing more than 7 days computation time when using EKR’s current
parallel PRL implementation for multi-core CPUs in JAVA.

The demand for high-performance PRL implementations has
been recently identified as a research challenge [19]. There exist
efficient approaches that bring PRL to the cloud [20, 21], but they
miss the full performance potential of modern clouds that are in-
creasingly equipped with multi-core CPU and many-core Graphics

https://doi.org/10.1145/3297280.3297330
https://doi.org/10.1145/3297280.3297330
https://doi.org/10.1145/3297280.3297330

RIGHTS

Processing Units (GPU). Papers [5, 12, 17] present PRL implemen-
tations in OpenCL - an emerging standard for uniformly program-
ming a wide range of parallel architectures such as multi-core CPU
and GPU. However, these OpenCL implementations are optimized
to achieve a high average performance over different architectures
while missing the full performance potential of individual architec-
tures. Approach [1] presents a CUDA-based implementation of PRL
optimized for NVIDIA GPUs, but it is not applicable for devices
from other vendors, e.g., Intel, AMD, or ARM.

In this paper, we develop an OpenCL implementation for PRL
that - in contrast to the related work which provide only average
good performance - provides high performance for each specifically
target hardware architecture by being automatically tunable. For
this, we exploit Multi-Dimensional Homomorphisms (MDHs) [16] -
a recently defined formalism of parallelizable functions. Applica-
tions that are expressed as MDH can be implemented as efficient
OpenCL code according to [16]. To enable implementation’s au-
tomatic optimization, the MDHs” OpenCL code is parameterized
with performance-critical parameters of the OpenCL’s platform
model - the number of threads (a.k.a. work-item in OpenCL) and
the number of thread groups (a.k.a. work-group) — and thus, opti-
mized values of these parameters can be determined for the target
architecture by auto-tuning [15]. MDHs’ OpenCL implementation
provides high performance for important linear algebra routines
(BLAS) on CPU and GPU [16].

We make the following new contributions:

(1) we show (in Section 3) that PRL can be expressed as MDH and
thereby demonstrate the generality of the MDH approach
which has so far been used for linear algebra routines;

(2) we show (in Section 4) that PRL can be efficiently executed on
multi-core CPU and many-core GPU by designing a parallel,
auto-tunable OpenCL implementation for PRL that is based
on the MDHs’ OpenCL implementation schema of [16];

(3) we experimentally evaluate (in Section 5) our parallel PRL
OpenCL implementation on both Intel multi-core CPU and
NVIDIA GPU by comparing it to the EKR’s currently used
parallel implementation of PRL for multi-core CPUs in JAVA.

2 PROBABILISTIC RECORD LINKAGE

Probabilistic Record Linkage (PRL) was introduced by Fellegi and
Sunter [4]. In the following, we recap the theoretical foundation of
PRL, and we show how PRL is used in the EKR cancer registry.

Let A and B be the two sets, e.g., of new patient records (A)
and existing patient records (B), whose intersection of duplicates
has to be identified. Records may be duplicates (i.e., refer to the
same real-world entity) but differ in their QID values; for example,
when there is a typo in patient’s forename: Mary vs. Marie. We
denote the set of duplicate records as M and the corresponding set
of non-duplicates as U:

M={(a,b) e AXB|la=b}

U={(ab)eAxBlazb}

Here, AX B = {(a,b)|a € A b € B} is the cartesian product of
A and B, and a = b means that records a and b refer to the same
real-world entity. Note that a = b does not necessarily require

Ay

527

that a and b coincide in their QID values (e.g., because of typos in
names, etc.).

PRL compares QID values by using matching weights that are
based on matching/unmatching probabilities. A matching probability
m¥ is a function that for records a and b yields the probability that
these records coincide in their i-th QID value and that both records
are equal to value x, given that (a, b) € M (i.e., the records refer to
the same real-world entity):

m¥(a,b) =P(a; =b; =x|(a,b) € M)

The unmatching probability u} is defined as the probability that
both records coincide in their i-th QID value and are equal to value
x (as before) but, in contrast to the matching probability’s definition,
the records refer to different entities, i.e., (a, b) € U:

uf(a,b) =P(a; =b;=x|(a,b)eU)

In EKR, the matching/unmatching probability functions m¥ and u}
are defined by value tables, i.e., EKR provides for each function a ta-
ble that assigns to a combination (x, i, a, b) the probability mY (a, b)
or u¥(a,b), correspondingly. EKR determines these probabilities
empirically by analyzing existing real-world data bases.

Using the matching/unmatching probabilities, matching weight
w; of a and b in the i-th QID is a real number that is calculated as:

m7(a,b)

lOg(m) caj =b; Ax =aj
wi(a,b) = l—lm;‘(a,b)
log(m ta; #bi ANx=a;

The matching weight w of a and b is then the sum of the w;(a, b):

N
w(a, b) = Z wi(a, b)
i=1

Here, N is the number of QIDs, e.g., N = 14 in case of EKR’s patient
records (the EKR’s 14 QIDs in Table 1 are discussed later). The mat-
ching weight is defined to be high when QID values coincide that
have a low frequency in EKR’s data base. For example, surname Di-
jkstra has quite a low frequency, therefore, its matching probability
mgﬁihjﬁga is high, and its unmatching probability ugﬁﬂhjﬁga is low;
both contribute to a high matching weight of records with surname
Dijkstra. In contrast, surname Smith has a high frequency - and
thus, as compared to surname Dijkstra, it has a lower matching
probability and a higher unmatching probability - causing a lower
matching weight for records with surname Smith. Note that in the
definition of w;(a, b), in case of a; # b;, it would also be possible to
set x = b; instead of x = a;. In [8], it is shown that both variants
usually lead to similar results.

The matching weight w is used to categorize a pair (a,b) €
A X B as either i) link, ii) non-link, or iii) possible-link; for this, an
upper and a lower threshold value are used which are in case of
EKR: 15 (lower) and 45 (upper), correspondingly. If a record pair’s
matching weight i) exceeds the upper threshold, then the weight
indicates a link, and the records are considered as duplicates; ii) is
below the lower threshold value, then a non-link is indicated, and
the records are considered as non-duplicates; iii) is between the
upper and lower threshold, then a possible-link is indicated, and the
records have to be manually checked by a human. The thresholds
are usually determined empirically and must be chosen carefully.
For example, setting the upper and lower threshold values close to

RIGHTS

each other minimizes the costly manual checking of patient records
by a human, but it may cause wrong link/no-link predictions.

As weight calculations are costly, PRL usually uses a so-called
blocking strategy [2] to reduce them: a record a € A is only com-
pared to — and thus matching weights are only calculated for - those
b € Bfor which a and b exactly coincide in a pre-defined set of QIDs.
For example, EKR uses a 7-staged blocking strategy. In Stage 1, the
matching weight of a € A is only calculated for those b € B for
which the following QIDs of a and b coincide: surname, forename,
and birthday; the set of QIDs is selected by the EKR experts, based
on empirical data. If arecord b € Bis found for which (a, b) € M, ie.,
a and b are considered as duplicates, a is not compared to the further
b € B (i.e., which differ from a in the surname, forename, and/or
birthday) and thus, costly weight calculations are omitted. If no
duplicate is found in Stage 1, a is compared in Stage 2 to those b € B
which coincide with a in the QIDs: surname, forename and address.
This procedure continues in Stages 3-7; each stage is characterized
by a selection of QIDs that is determined empirically by the EKR
experts. After Stage 7, if no duplicate b € B is found, record a is
considered to have either no duplicates in B if the highest computed
matching weight of a in Stages 1-7 — denoted as w(a, bpax_a) for
the corresponding bpax_a € B — is below the lower threshold, and
a and bpax_a are considered as a possible-link if matching weight
w(a, bmax_a) is between lower and upper thresholds.

Table 1 shows the 14 QIDs that are currently used by EKR for
representing a patient. The QIDs for the names consist of three
parts, in order to cover patients with multiple names, e.g., two
forenames. The birth date is given by the day/month/year of birth,
and a patient’s address is represented by its municipality key.

No. | QID | mi
1 || Surname 1 0.975
2 || Surname 2 0.975
3 || Surname 3 0.975
4 || Forename 1 0.975
5 || Forename 2 0.975
6 || Forename 3 0.975
7 || Birth name 1 0.975
8 || Birth name 2 0.975
9 || Birth name 3 0.975
10 || Day of birth 0.99
11 || Month of birth 0.99
12 || Year of birth 0.99
13 || Gender 0.999
14 || Municipality key | 0.9

Table 1: The 14 QIDs used by EKR for representing patients,
and their averaged matching probabilities m;.

Table 1 also shows the QIDs’ averaged matching probabilities m;,
which EKR uses instead of the matching probabilites m}. An ave-
raged matching probability m; represents the matching probability
m7 averaged over the x value. For example, mforename represents
the probability that two records referring to the same real-world
entity have the same forename, where — according to the averaged
matching probability’s definition — the forename is arbitrary (i.e.,

Ay

528

it does not have to be equal to a concrete forename x). EKR uses
the averaged matching probability m; because data bases contain-
ing duplicate records are rare but are required for determining
matching probabilities (as discussed before); as averaged matching
probabilities, EKR uses pre-computed values [8]. The highest proba-
bility — and thus the highest impact on the matching weight — has
the gender QID (see Table 1): the gender usually does not change for
a person, and its identifying for a person is usually not error-prone.
The unmatching probabilities u} are pre-computed by EKR based
on the patient data base. As QIDs may have many possible values x,
e.g., the forename QID, EKR does not provide a pre-computed u}
for each possible x; for the missing u}', EKR uses a default proba-
bility. The unmatching probabilities u} are not stated in Table 1
for brevity — for each QID, they are defined once per each (of the
many) possible QID values x.

3 PROBABILISTIC RECORD LINKAGE AS A
MULTI-DIMENSIONAL HOMOMORPHISM

Multi-dimensional homomorphisms (MDHs) are a class of paralle-
lizable functions introduced in [16] — they extend the traditional
(one-dimensional) homomorphisms on lists [6]. In this section, we
first demonstrate that PRL can be expressed as an MDH. Based on
this, we show in Section 4 how the MDHs’ implementation schema
in [16] can be used to efficiently parallelize PRL.

MDHs operate on multi-dimensional arrays and are defined as
follows. Let T and T’ be two arbitrary data types, and let further
T[N;p]...[Ng]be the set of d-dimensional arrays with elements
in T and size N; in dimension i. A function h: T[N1]...[Ny] —
T’ on d-dimensional arrays is a multi-dimensional homomorphism
(MDH) iff there exist combine operators ®1,...,®4 : T X T’ — T,
such that for each 1 < i < d and arbitrary, concatenated input array
a ++; b in dimension i, the homomorphism property is satisfied:

h(a++ib) = ha) ®; h(b)

In words: the value of h on a concatenated array in dimension i
can be computed by applying h to the array’s chunks a and b and
combining the results by using the combine operator ®;. Since the
computations of h(a) and h(b) are independent of each other, they
can be performed in parallel.

In [16], it is proved that every MDH h can be computed as:

h(a)= @&, fCalir]...[ig])

1<i;<N;

By

1<ig<Ng4

Here, a € T[N1]...[Nyg], and a[i1]...[ig] is the element in a
that is accessed by the indices iy, . . ., iz. Function f describes the
behavior of h on scalar values, i.e., f(a[0]...[0]) = h(a) for each
d-dimensional array a comprising only one element (i.e., a has size 1
in each of its d dimensions). Intuitively, in the formula, we apply f
to each of the input array’s scalar values al i1] .. . [ig], and we com-
bine the obtained results, step by step, in the dimensions 1,...,d
using the combine operators ®1, ..., ®4; combine operators can
be applied in any arbitrary order [16]. Concluding, each MDH is
completely determined by its combine operators ®1, ..., ®4 and
its behavior f on scalar values. This enables expressing h also as:

h =md_hom(f, (®1,...,®q))

RIGHTS LI

Note that md_hom can be computed in parallel — function f can be
applied independently to the scalar values, and the combination of
the results can also be performed in parallel using parallel reduc-
tion [13] - thus the md_hom function can be viewed as a parallel
pattern (a.k.a. algorithmic skeleton [7]) as described in detail in [16].
The PRL problem can be expressed using the md_hom pattern:

1

where o denotes functional composition applied from right to left.
Intuitively, in (1), we first form the set of all pairs (a,b) € AX B
by applying function cart to A and B. Then, function weight com-
putes for each pair (a, b) the matching weight w(a, b) (according
to our formula in Section 2). For each record a, we combine the
computed weights w(a, b) for the different b € B via function maxmy.
Thus, we obtain for each a € A the maximum matching weight,
i.e., w(a, bpax_a) for the corresponding bnax_a € B that leads to
the highest weight of a. As we need the maximum weights for
all a € A, we straightforwardly concatenate their computed and
combined weights using +. Note that function weight represents
PRL’s behavior f on scalar values, and functions # and maxp, are
PRL’s combine operators ®; and ®3, correspondingly. Therefore,
as discussed before, we can apply function weight in parallel to
the scalar values (in this case, pairs of patient records), and we
can combine function weight’s results in parallel by its combine
operators — our parallel implementation of PRL is focus of Section 4.

In the following, we discuss in detail the building blocks of our
PRL md_hom expression (1) — cart, weight, +, and maxpy — and we
present their implementations which we use in Section 4 in our
OpenCL implementation of the md_hom expression (1).

PRL md_hom(weight, (4, maxmy)) o cart

Function cart. MDHs take as input multi-dimensional arrays.
However, in case of PRL, the input are two sets A and B — for which
the common duplicate patient records have to be identified. We use
function cart for computing the cartesian product of A and B:

cart(A, B)[i][j] = (A(i). B()))

It takes as input the sets A and B, and it yields a 2-dimensional
array cart(A, B) comprising pairs (A(i), B(j)), where A(i) is the
i-th patient record in set A, and B(j) the j-th record in set B.

We implement function cart in OpenCL as a straightforward
preprocessor macro, as follows:

#define cart(A,B , i,j, ¢) ((c==0) ? A(i) : B(3))

The macro takes as input the sets A and B, the indices i and j, and
the desired component of pair (A(i), B(j)), i.e., ¢ = 0 for A(i) and
¢ # 0 for B(j). As preprocessor macros in OpenCL are resolved at
compile time, function cart has no impact on runtime performance.
Function cart’s impact on compile time is also negligible: it only
performs the simple check c==0.

Functionweight. Function weight computes the matching weight
of two patients a and b (according to Section 2) — it represents the
behavior of f on scalar values in our PRL md_hom expression (1).
It takes as input pairs of patient records in A X B — the result of
function cart - and it yields matching weights as real numbers.

Listing 1 shows the pseudocode of our OpenCL implementa-
tion of the weight function. We implement weight as a sequential
OpenCL code which is called as helper function in our parallel

Ay

oI R B LS I IR TSR C

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

529

result_t weight(const patient a,
const patient b,
const prob up,
const prob a_mp)
{
result_t res = { a,b , @, NON_MATCH 3};
// blocking strategy
bool match = false;
// 1st stage
if (!match) {
match = eq_str(a.surname, b.surname)
&& eq_str(a.forename, b.forename)
&& a.birth_day = b.birth_day
&& a.birth_month = b.birth_month
&& a.birth_year = b.birth_year;
}
/*x Stages 2-6 */
// 7th stage
if (!match) {
match = /% ... %/
}

// check blocking result
if (!match) return res;
// compute weight
double weight = 0.0;

weight += /% compute matching weight 1 %/
/7.
weight += /x compute matching weight 14 =/

res.matching_weight weight;

// categorize weight

if(weight > UPPER_THRESHOLD)
res.match_status MATCH;

else if (weight < LOWER_THRESHOLD)
res.match_status NON_MATCH;

else
res.match_status

return res;

}
Listing 1: OpenCL implementation (pseudocode) of function
weight for computing two patients’ matching weight.

POSSIBLE_MATCH;

OpenCL implementation which we introduce in Section 4. The in-
put of function weight are two patient records a and b for which
the matching weight should be computed (Listing 1, lines 1 and 2).
Moreover, weight takes as input the input records’ corresponding
unmatching and averaged matching probabilities (lines 3 and 4)
which are required for computing the matching weight (see Sec-
tion 2).

In the first part of our implementation (lines 7-23), we check if
a and b belong to the same block in terms of one of the 7 stages
of EKR’s blocking strategy described in Section 2. For example,
in the first stage (lines 9-16), records a and b belong to the same
block if they coincide in their QIDs for the surname (line 11), fore-
name (line 12), and birthday (lines 13-15). If a and b do not belong
to the same block in one of the blocking strategy’s 7 stages, the
costly computation of the matching weight for a and b is omitted
(line 23), and a and b are considered as non-link with a matching
weight of 0 (lines 23 and 6). If a and b belong to the same block
for one of the stages, their matching weight is computed - this is
done by computing and summing up the QIDs’ matching weights
wi(a, b), ..., wia(a, b) for each of the EKR’s 14 QIDs (lines 24-28),

RIGHTS

according to our formula for the matching weight w(a, b) in Sec-
tion 2; the computed weight is written to result element res (line 29).
We also compute and add to res the information if a and b are
considered as a link, non-link or possible-link by comparing the
computed weight to the upper and lower thresholds (lines 30-36).

Concatenation (4). Function + is used as the first combine oper-
ator in our md_hom expression for PRL (1), i.e., ®1 = +. It takes as
input two one-dimensional arrays, and it yields the concatenation
of these two arrays. In our OpenCL kernel for (1) (introduced in
Section 4), we use concatenation only on arrays whose content
is computed. Thus, concatenation means writing the computed
array’s content consecutively to memory (as we demonstrate later),
i.e., it does not require an additional computation effort.

Comparison Function (maxpy). Function maxpy is used as the sec-
ond combine operator of our md_hom expression (1) for PRL, i.e.,
®2 = maxmy. It takes as input two return values of function weight:
(a,b,w,L) and (a’, b’,w’, L"), where w is the computed matching
weight for patients a and b, and w’ is the weight for a’ and b’, cor-
respondingly; L and L’ indicate a link, non-link or possible link be-
tween the patients. The result of maxpy is (a, b, w, L), if w > w’, and
(a’,b’,w’, L") otherwise. We refrain from presenting our OpenCL
implementation for function maxpy, as it is straightforward.

4 PROBABILISTIC RECORD LINKAGE IN
OPENCL VIA THE MDH APPROACH

OpenCL is currently a de-facto standard for uniformly program-
ming modern parallel devices such as multi-core CPU and many-
core GPU. OpenCL provides to the programmer a 2-layered thread
hierarchy: in the first layer, the programmer distributes computa-
tions to work-groups (WGs), and in the second layer, the compu-
tations of each WG are further distributed to work-items (WIs) —
the OpenCL term for thread. Usually, on a multi-core CPU, WGs
are scheduled to the CPU’s cores, and WIs are scheduled to the
cores’ Single Instruction Multiple Data (SIMD) vector processing
units [9]; on a GPU from NVIDIA, WGs are processed by so-called
Streaming Multiprocessors (a.k.a. SMX) and WIs are processed by
CUDA cores which are part of the SMX [14].

The numbers of WGs and WIs are parameters that have to be set
manually by the OpenCL programmer and are crucial for achieving
high performance [15]: a too low number of WIs and WGs do not
appropriately utilize the hardware, while too high numbers may
cause a high parallelization overhead. Optimal numbers of WGs
and WIs have to be chosen specifically for the target hardware,
because hardware differs significantly in its characteristics: e.g., a
GPU has many more cores than a multi-core CPU. For providing
high performance on various hardware, we use auto-tuning [15] to
automatically choose appropriate numbers of WGs and WIs.

Figure 1 outlines our OpenCL implementation for PRL which is
based on the MDHs’ implementation schema in [16]. According to
Section 3, our PRL md_hom expression (1) can be computed as:

PRL(cart(A,B)) =

+ maxmy weight(cart(A B)liallig])

ia€[1,Na] ige[1,Ng]
where Ny and Np denote the number of patient records in sets
A and B, correspondingly. In words: function weight is applied

Ay

530

to each pair of patient records in the 2-dimensional input array
cart(A, B), and the results of computing weight are combined in
dimension 2 by function maxy, and by concatenation + in dimen-
sion 1. For illustration, we use in Figure 1 input sizes N4 and Ng
both of 8 elements. For each of the the input array cart(A, B)’s two
dimensions, we consider 2 WGs, each containing 2 WIs, i.e., we use
in total 4 WGs, each comprising 4 WIs.

The input array cart(A, B) (marked with (D in Figure 1) com-
prises pairs of patient records, denoted by symbol X. The pairs are
evenly partitioned and distributed to the 22 WGs (see (2)), i.e., each
WG processes (in parallel to the other WGs) a chunk of 4 * 4 patient
pairs, as shown in 3). For computing a WG-chunk, it is further
partitioned and distributed to the 2 2 WIs of the WG, as illustrated
in @. We distribute the WG-chunks to the WIs in a strided fash-
ion (see 3 and @), thereby enabling high performance: a strided
distribution causes consecutive Wls to access consecutive mem-
ory regions, enabling either a higher memory bandwidth on GPUs
(a.k.a. memory coalescing [14]) or efficient SIMD-parallelization on
multi-core CPUs [9]. The WIs process simultaneously chunks of
size 2 * 2 (see (5)) by applying the PRL md_hom expression (1) to
their chunks, i.e.: each WI applies (in parallel to the other WIs) the
weight function to the patient pairs of its chunk, and it combines
the results of function weight in both dimensions by using the
combine operators maxp, and + as illustrated in (6). We obtain a
1-dimensional array per WI-chunk (see (7)), containing the two
combined and concatenated matching weights, each denoted by
symbol o in Figure 1. The processed WI-chunks — shown in (8) — are
then further combined cooperatively by the WIs in parallel - using
the combine operators maxp, and 4 - to one result per WG (see (9)).
Finally, the WGs’ results in (9 have to be combined, analogously to
before, in both dimensions using again our two combine operators
+ and maxpy, leading to the final result (3. Note that our implemen-
tation is correct because of the MDHs’ homomorphic property: it
ensures correctness when applying the MDH to smaller chunks
and then combining the obtained results by the MDH’s combine
operators — this is formally proven in [16].

We enable our implementation to be auto-tunable by making
it parameterized in the number of WGs and WIs, the optimized
parameter values are determined via auto-tuning [15]. For example,
another valid configuration in Figure 1 consists of 16 WGs, each
containing 1 WI; it achieves high performance on a 16-core CPU
that contains no SIMD-units for processing multiple W1s.

Listing 2 is the pseudocode of our OpenCL implementation (a.k.a.
kernel in OpenCL terminology) for the PRL md_hom expression (1)
which we have illustrated in Figure 1. This kernel code is executed
by the individual WIs in a Single-Program Multiple-Data (SPMD)
manner. Each WI processes its corresponding WI-chunk (step &
in Figure 1) in parallel to the other WIs (Listing 2, lines 4-12);
the WI-chunk is part of the WI’s corresponding WG-chunk - the
partitioning is shown in steps (D-®) of Figure 1. The WG- and
WI-chunks are obtained by straightforwardly computing indices
(lines 9-10) based on offsets and the ids of the WIs and WGs; the
indices are used to access the input array cart(A, B) (line 11). We
access the array in a strided fashion by multiplying NUM_WI_B to
WI_itr_B in line 10; this leads to higher performance as discussed
before. After the WI-chunks are processed (step (7)), the WIs copy
their results (line 13) to local memory — an OpenCL memory region

10

11

12
13

15
16

17
18
19

20
21
22
23
24

RIGHTS LI N

®

WG partitioning -~ Vel

—_—) WG-chunks
P< >< ><X > > XX X< X o -
P< ><X > X X X X X PR
be > >< > < p< <X <X g
> XX > < p< <X < g
> > > > > X< b > > >q
[&) O =
i combine WG < |
o results <) <)
o o \ / =
44—
o = WG-results =
o (= / \ (=
o O O]
o O =)

©)

@

®

WI partitionin Ei]
—g> :VEI-churgs

maTmw

weight(x) weight(x)
weiiht(x).weight(x)lﬂ_@

= combine WI

o) results v
- y—results E
- ki

Figure 1: Schema of our OpenCL implementation for the PRL md_hom expression. We illustrate the case of: |[A| = |B| = 8, and 2

‘WGs and 2 WIs in each of the two dimensions.

__kernel void prl(/x ... %/)
{
/* initialization */
// "md_hom(weight, (...))" on WI-chunk

for(int WI_itr_A = 0 ; ++

WI_itr_A)

WI_itr_A < WI_CHUNK_SIZE_A ;

{
for(int WI_itr_B = 0 ;
++WI_itr_B)

WI_itr_B < WI_CHUNK_SIZE_B ;

{
int index_A = WG_offset_A(WG_ID_A) + WI_offset_A(
WI_ID_A) + WI_itr_A % N_B;
int index_B = WG_offset_B(WG_ID_B) + WI_offset_B(

WI_ID_B) + WI_itr_B * NUM_WI_B;
res[WI_itr_A] max_mw= f(cart(A,B)[index_A][
index_B 1);
¥
res_lcl[WI_ID_A][WI_ID B] =
barrier (CLK_LOCAL_MEM_FENCE);
// parallel reduction of WI results
for(int stride = NUM_WI_B / 2 ; stride > 0@ ;
/=2)

res;

stride

{

if(WI_ID_B < stride)

res_lcl[WI_ID_A 1[WI_ID_B] max_mw= res_1lcl[
WI_ID_A][WI_ID_B + stride 1;

barrier(CLK_LOCAL_MEM_FENCE);
¥
/*

3}
}

Listing 2: OpenCL implementation (pseudocode) of our PRL
md_hom expression (1).

store WGs' results .ox/

that can be accessed by all WIs within a WG. The individual WIs’
results (step (®) are then combined cooperatively by all WIs in

parallel to one result per WG (lines 15-21; step (9 in Figure 1).

For this, WIs’ results are combined in the second dimension by
using function maxmy (line 19), and we write the combined results

.':1}

531

consecutively to memory. When writing consecutively to memory,
we implicitly perform concatenation of the computed results —
and thus the combination by + in the first dimension. Therefore,
concatenation does not require an additional computation effort.
The obtained results (step {9) - one per WG - have to be combined
further to the final result (step @3). Since OpenCL does not support
synchronization between WGs, we start a second kernel that takes
first kernel’s result as input. The second kernel combines the first
kernel’s WG-results (depicted in step (0), analogously to before
(lines 15-21), in both dimensions using our two combine operators;
we thus refrain from presenting the second kernel’s pseudocode.
We avoid synchronization between WGs in the second kernel by
starting only one WG in the second dimension, which has an only
negligible impact on performance: since first kernel’s number of
WGs in the second dimension is usually rather low — for example,
on our target system, an optimal number of WGs is < 512 for both
CPU and GPU - the second kernel combines only a low number of
WG results and thus, its runtime is negligible as compared to the
runtime of the first kernel (< 0.6%).

5 EXPERIMENTAL RESULTS

In the following, we experimentally study the efficiency of our PRL
OpenCL implementation - presented in Section 4 — by comparing it
to the EKR’s current implementation that uses JAVA multi-threading
for parallelization on multi-core CPUs. In contrast, our implemen-
tation is based on OpenCL and thus is executable on a broad range
of modern processors, e.g., multi-core CPUs and also many-core
GPUs (Graphics Processing Units) of different vendors.

Figure 2 illustrates the runtime of our OpenCL implementation
in Listing 2 on Intel Xeon E3-1240 v2 4-core CPU (dark gray line)
and NVIDIA Tesla V100-SXM2-16GB GPU (light gray line) as com-
pared to the runtime of EKR’s parallel implementation of PRL in
JAVA (black line) which can only be executed on the multi-core
CPU. We automatically optimize our OpenCL implementation for

—&— EKR A— md_hom (CPU) O md_hom (GPU)
1000
=)
e
GEJE 500
g9 s
2 O AN
© 0om = 0 O
215 216 217 218 219 220

Number of new records

Figure 2: Runtime (in minutes) of our PRL OpenCL imple-
mentation (in Listing 2) on Intel multi-core CPU (dark gray
line) and NVIDIA many-core GPU (light gray line) as com-
pared to the EKR’s parallel JAVA implementation (black
line) which targets multi-core CPUs only. We show the me-
dian time of 30 runs. Our implementation provides signif-
icantly better performance on both CPU and GPU as com-
pared to the EKR’s implementation on the CPU.

the target device by choosing optimized numbers of WIs and WGs
via auto-tuning (as discussed in Section 4). We use the Auto-Tuning
Framework (ATF) [15] which has proven to be effective for OpenCL;
it requires less than 24 hours of runtime for auto-tuning our PRL
implementation. This additional overhead for auto-tuning is re-
quired only once per hardware device, i.e., the auto-tuned numbers
of WGs and WIs can be reused for each execution of PRL on the
same device.

In Figure 2, we show the results for merging 5.4 * 10° patient
records — the current amount of records in the EKR’s data base -
with increasing numbers of new patient records. As input data,
we use real-world patient records provided by the EKR. For a fair
comparison to JAVA, we measure for our OpenCL implementation
the runtime of both, our two PRL kernels (see Section 4) and the
OpenCL C++ host code [18] which is required for executing OpenCL
kernels; the host code performs data transfers between main and
device’s memory, and it also just-in-time compiles the kernels.

We observe that our OpenCL implementation provides signifi-
cantly better performance than EKR’s JAVA implementation — with

—>—md_hom (CPU + GPU) A— md_hom (CPU)

__ 1000
£
Eo

o
v & 500
g S A
c AN
& 0 A A A =

215 216 217 218 219 220

Number of new records

a speedup of 8 on the CPU and 80 on the GPU even for a small
input size of 218 This is because on the CPU, we efficiently utilize
its SIMD vector units: we access data in a strided fashion (see Sec-
tion 4), and we automatically choose an optimized number of WIs
via auto-tuning - 8 Wls in case of our CPU - enabling OpenCL to ef-
ficiently vectorize our code according to Intel’s recommendation [9].
In contrast, the EKR’s JAVA implementation parallelizes only for
the CPU’s cores, without exploiting SIMD units. Moreover, the
EKR’s implementation is not efficient in handling memory: it uses
convenient high-level data structures such as JAVA’s ArrayList
which perform costly memory reallocations transparently from the
user, while we rely on explicitly managed low-level OpenCL buffers
which avoid reallocations.

On the GPU, performance is better because GPUs provide a sig-
nificantly higher number of cores than the multi-core CPU: 5376
cores (GPU) vs. 4 cores (CPU). We thus reach on the GPU better
results than both, the EKR’s JAVA implementation and also our
OpenCL implementation when optimized and executed on the CPU.
Note that even though the GPU provides about 10* more cores than
the CPU, our implementation on the GPU is on average (only) 10
times faster as compared to executing it on the CPU. This is because
we highly optimize our code for the CPU via auto-tuning which
determines optimized number of WIs and WGs to efficiently utilize
the CPU’s powerful cores — 3.4 Ghz (CPU) vs 1.5 Ghz (GPU) - and
these optimized numbers enable exploiting CPU’s SIMD vector
units, which diminishes the expected (high) performance gap be-
tween CPU and GPU [11]. Furthermore, in contrast to the GPU,
the CPU’s architecture is better optimized for complex calcula-
tions — such as PRL’s weight calculations (see Section 2) - e.g., by
performing branch prediction, which also significantly contributes
to a high performance of PRL on the CPU.

In Figure 3, we demonstrate the adverse effect of optimizing PRL
for an only average high performance over hardware architectures —
the usual approach of the related work which provide OpenCL
implementations that cannot be auto-tuned. For this, we compare
the runtime of our implementation when auto-tuned specifically for
the target CPU/GPU against the OpenCL implementation for PRL
that is optimized for an only average high performance over CPU
and GPU. As averaged implementation, we use our auto-tunable

—8&—md_hom (CPU + GPU) O md_hom (GPU)

__ 1000
£
E>o
o
() 500
ES
€ ©
= 0 O o =] o
215 216 217 218 219 220

Number of new records

Figure 3: Runtime (in minutes) of our PRL OpenCL implementation (Listing 2) on Intel multi-core CPU (left) and NVIDIA
many-core GPU (right) using average-good numbers of WIs and WGs for both CPU and GPU (black lines), as compared to our
implementation with optimized numbers of WGs/WIs for either CPU (gray line, left figure) or GPU (gray line, right figure).
We show the median time of 30 runs. Optimizing the numbers of WGs and W1s specifically for the target hardware (gray lines)
provides significantly better performance as compared to using only average-good numbers of WGs and WIs (black lines).

532

RIGHTS L1 N Hig

RIGHTS LI

OpenCL kernel in Listing 2 with fixed numbers of WIs and WGs (i.e.,
we do not auto-tune these numbers for the specific target device),
according to the related work. We choose the number of WGs and
WIs following the Intel’s and NVIDIA’s optimization guides [9, 14].
For the number of W1s on the CPU, Intel recommends to choose it
as a multiple of the SIMD vector length - 8 in case of our CPU - to
enable SIMD vectorization. NVIDIA recommends for its GPUs to
use a multiple of the so-called warp size of 32 as the number of WIs.
For the number of WGs, both guides recommended to choose it
as (at least) one WG per core (a.k.a. SMX in NVIDIA terminology).
Following these recommendations of Intel and NVIDIA, we choose
as number of WIs 32 as this is a multiple of both the CPU’s SIMD
vector length of 8 and the GPU’s warp size of 32, and we use 80 WGs
as this is the maximum number of cores of both architectures — the
Intel CPU has 4 cores and the NVIDIA GPU has 80 SMX.

We observe in Figure 3 that even though the number WIs and
WGs are chosen according to vendors’ optimization guides, we
reach with them only poor results on both CPU (left) and GPU
(right) as compared to our OpenCL kernel auto-tuned for the spe-
cific target device. This is because, for complex applications such as
PRL, non-intuitive numbers of WIs and WGs often lead to best per-
formance [10] due to further influencing factors, e.g., the number of
used registers per WI/WG and/or cache utilization. For example, on
the CPU, we have determined via auto-tuning the optimal number
WGs of 512, even though the CPU provides only 4 cores, and on
the GPU, the optimal number of WIs is 16, although the NVIDIA
documents recommend for this number a multiple of 32.

6 CONCLUSION

We present a high-performance, parallel OpenCL implementation of
Probabilistic Record Linkage (PRL) that targets both multi-core CPU
and GPU. Our implementation can be automatically optimized for
the target hardware architecture by auto-tuning. For this, we use the
approach of Multi-Dimensional Homomorphisms (MDHs) and their
OpenCL implementation [16]: we show how PRL is expressed as an
MDH, and we use the MDHs’ implementation schema to elaborate
a high-performance OpenCL implementation that is automatically
optimized for different target hardware architectures.

We show experimentally that our implementation for PRL pro-
vides significantly better performance (up to 80 times) on both CPU
and GPU as compared to the currently used PRL implementation of
the EKR - the largest cancer registry in Europa — which uses JAVA
threads on multi-core CPUs. Our PRL implementation is generic
and can be used in further application scenarios.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for very helpful com-
ments. This work has been supported by the BMBF project HPC2SE
and the DFG Cluster CiM. We thank NVIDIA Corp. for donating
the hardware used in our experiments.

REFERENCES

[1] Murilo Boratto, Pedro Alonso, Clicia Pinto, Pedro Melo, Marcos Barreto, and
Spiros Denaxas. 2018. Exploring hybrid parallel systems for probabilistic record
linkage. The Journal of Supercomputing (2018).

[2] Peter Christen. 2012. Data Matching: Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer.

Ay

533

[3]

—_ =
oo

=
=

—
_

=
&

(14]

=
&

[16

[17

[18

[19

[21]

A. K. Elmagarmid et al. 2007. Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge and Data Engineering, 16 pp.

Ivan P. Fellegi et al. 1969. A Theory for Record Linkage. J. Amer. Statist. Assoc.,
1183-1210.

Benedikt Forchhammer et al. 2013. Duplicate Detection on GPUs. HPI Future
SOC Lab 70, 3 pp.

Sergei Gorlatch. 1999. Extracting and implementing list homomorphisms in
parallel program development. Science of Computer Programming 33, 27 pp.
https://doi.org/10.1016/S0167-6423(97)00014-2

Sergei Gorlatch and Murray Cole. 2011. Parallel Skeletons. Encyclopedia of
Parallel Computing, 1417-1422.

K Hentschel et al. 2008. Das Krebsregister-Manual der Gesellschaft der epidemi-
ologischen Krebsregister in Deutschland e.V. Zuckschwerdt Verlag.

Intel. 2014. OpenCL Optimization Guide. https://software.intel.com/sites/default/
files/managed/72/2¢/gfxOptimizationGuide.pdf

Kazuhiko Komatsu et al. 2010. Evaluating Performance and Portability of OpenCL
Programs. In Workshop on Automatic Performance Tuning. 15 pp.

Victor W. Lee et al. 2010. Debunking the 100X GPU vs. CPU Myth: An Evaluation
of Throughput Computing on CPU and GPU. SIGARCH Comput. Archit. News,
451-460.

Axel-Cyrille Ngonga Ngomo et al. 2013. When to Reach for the Cloud: Using
Parallel Hardware for Link Discovery. In Extended Semantic Web Conference.
Springer, 275-289.

John Nickolls et al. 2008. Scalable Parallel Programming with CUDA (ACM
SIGGRAPH). 14 pp.

NVIDIA. 2009. NVIDIA OpenCL Best Practices Guide. https:
//www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/
NVIDIA_OpenCL_BestPracticesGuide.pdf

Ari Rasch and Sergei Gorlatch. 2018. ATF: A Generic, Directive-Based Auto-
Tuning Framework. Concurrency and Computation: Practice and Experience, 16
pp. https://doi.org/10.1002/cpe.4423

Ari Rasch and Sergei Gorlatch. 2018. Multi-dimensional Homomorphisms and
Their Implementation in OpenCL. International Journal of Parallel Programming
(2018), 101-119. https://doi.org/10.1007/s10766-017-0508-z

Ziad Sehili et al. 2015. Privacy Preserving Record Linkage with PPJoin . In
Datenbanksysteme fiir Business, Technologie und Web (BTW 2015). Gesellschaft
fiir Informatik e.V., 85-104.

John E Stone et al. 2010. OpenCL: A Parallel Programming Standard for Hetero-
geneous Computing Systems. Computing in Science & Engineering.

Dinusha Vatsalan et al. 2017. Privacy-Preserving Record Linkage for Big Data:
Current Approaches and Research Challenges. Springer, 851-895.

X. Zhang et al. 2013. A Privacy Leakage Upper Bound Constraint-Based Approach
for Cost-Effective Privacy Preserving of Intermediate Data Sets in Cloud. IEEE
Transactions on Parallel and Distributed Systems, 1192-1202.

Xuyun Zhang et al. 2013. An efficient quasi-identifier index based approach for
privacy preservation over incremental data sets on cloud. J. Comput. System Sci.,
542 - 555.

https://doi.org/10.1016/S0167-6423(97)00014-2
https://software.intel.com/sites/default/files/managed/72/2c/gfxOptimizationGuide.pdf
https://software.intel.com/sites/default/files/managed/72/2c/gfxOptimizationGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://doi.org/10.1002/cpe.4423
https://doi.org/10.1007/s10766-017-0508-z

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190107091858
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 1225
 334
 Fixed
 Up
 12.6000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 8
 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 1225
 334
 Fixed
 Down
 3.6000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 8
 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 1225
 334
 Fixed
 Down
 1.8000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 8
 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 1225
 334
 Fixed
 Up
 7.2000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 8
 4
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 1225
 334
 Fixed
 Up
 7.2000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 8
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 1225
 334

 Fixed
 Up
 7.2000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 8
 7
 1

 1

 HistoryList_V1
 qi2base

