
Ari Rasch, Richard Schulze, and Sergei Gorlatch

Goals

a.rasch@wwu.de

md_stencil: High-Performance Stencil Computations on CPU and GPU
via Multi-Dimensional Homomorphisms

We	aim	 to	 achieve	 for	 stencil	 computa3ons	 in	 one	
approach	three	major	goals:

Produc'vity

Performance 1. Transforming	DSL	programs	to	MDH	representa6on.	

2. Genera3ng	auto-tunable	OpenCL	code	from	MDH	representa3on.	

3. Auto-tuning	 OpenCL	 code	 for	 target	 device	 and	 input/output	
char.	

4. Execu3ng	auto-tuned	OpenCL	code.	

Approach

Transformation: DSL → MDH
Hardware

‣ CPU: Intel Xeon E5
‣ GPU: NVIDIA V100

Preliminary Results

[1] Rasch, Schulze, Gorlatch, "Generating Portable High-
Performance Code via Multi-Dimensional Homomorphisms.”,
PACT’19
[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of
Parallel Programs with Interdependent Tuning Parameters via
Auto-Tuning Framework ATF”, TACO’20 (accepted)
[3] Rasch, Gorlatch, "ATF: A Generic, Directive-Based Auto-Tuning
Framework.”, CCPE’19
[4] Rasch, Wrodarczyk, Schulze, Gorlatch, ”OCAL: An Abstraction
for Host-Code Programming with OpenCL and CUDA.”,
ICPADS’18
[5] Rasch, Bigge, Wrodarczyk, Schulze, Gorlatch. "dOCAL: High-
Level Distributed Programming with OpenCL and CUDA.”, JOS’19

MDH
Representation

Auto-Tunable
OpenCL Code

CPU-Optimized
OpenCL Code

MDH-CG [1]
ATF [2,3]

GPU-Optimized
OpenCL Code

ATF [2,3] ②①

③ GPU

CPU
dOCAL [4,5]

dOCAL [4,5]

④

MDH Code GenerationStencil DSL

Portability

conv2d
(…) mcc(…)

map-n(
…)

…

The MDH Representation relies on three higher-order functions (patterns):

j3d7pt(…)

TVM [7]: 2.75x on GPU for MCC  
on their own real-world data set 

from deep learning

Lift [6]: 1.9x-4.9x on CPU and 1.02x-2.34x on GPU for conv2d
and j3d7pt on Lift’s own data sets

Intel MKL-DNN / NVIDIA cuDNN:  
1.3x on CPU and 3.31x on GPU for
MCC on TVM’s real-world data set

Artemis [8]: 0.98x-1.07x on GPU
for conv2d and j3d7pt

Speedups of md_stencil over well-performing
machine- and hand-optimized approaches

[6] Hagedorn, et al., "High Performance Stencil Code Generation with Lift.”, CGO’18 (Best Paper Award)
[7] Chen, et. al, "TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”, OSDI’18
[8] Rawat, et. al, "On Optimizing Complex Stencils on GPUs”, IPDPS’19

3. out_view(out)(p,q)(out[p,q]) 

2. md_hom(*, (++,++,+,+)) 

1. in_view(im, w)(p,q , r,s)(in[p+r , q+s], w[r,s]) 

competitive to
best available

solutions

functional and performance —
over architectures and input/

output characteristics easy to use
& extensible

1. in_view: uniformly	prepares	stencil-specific	input	data
2. md_hom: specifies	stencil	computation
3. out_view: uniformly	prepares	stencil-specific	output	data

Example: Conv 2D (conv2d)

input  
image

weight  
matrix indices for 

input image
indices for 

weight matrix

data accesses

output
image indices for 

output image

data accesses

multiplie elements
in in and w

concatenate in  
p & q dimension

sum in  
r & s dimension

conv2d = out_view(…) o md_hom(…) o in_view(…) 

WIP
Results

