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I. INTRODUCTION 

Stencils are important in popular fields, ranging from 
machine learning to physical simulations. Code generation and 
optimization for stencils is the focus of many important projects; 
however, the increasing heterogeneity in state-of-the-art parallel 
systems requires rethinking the traditional approaches which are 
usually designed and optimized toward particular architectures 
only. 

Our poster presents work-in-progress results for md_stencil 
– a novel approach, implemented as a library, toward fully 
automatic code generation and optimization for stencil 
computations targeting different kinds of modern architectures: 
multi-core CPU, GPU, etc. Our approach relies on the algebraic 
formalism of Multi-Dimensional Homomorphisms (MDH) and 
their code generation mechanism in OpenCL [PACT’19]. We 
demonstrate how important stencil computations are expressed 
as MDHs, which enables md_stencil to internally exploit the 
existing code generation and optimization mechanism for 
MDHs, while providing to the user a standard, high-level stencil 
user interface. Our preliminary experiments are encouraging: we 
show for real-world stencil computations that md_stencil 
achieves better performance on both CPU and GPU as compared 
to state-of-practice hand- and machine-optimized code: Intel 
MKL-DNN for CPU and NVIDIA cuDNN for GPU, as well as 
the popular approaches Lift [CGO’18], TVM [OSDI’18], and 
Artemis [IPDPS’19] on their own stencil examples and data sets.  

II. APPROACH 

The main challenge addressed by our poster is expressing 
important stencil computations in the MDH formalism, which 
enables generating and optimizing code for them based on the 
MDHs’ existing mechanisms. A general, straightforward MDH 
stencil representation is presented in our previous work 
[PACT’19]; in contrast, this poster introduces optimized MDH 
representations for important classes of stencils. For this, we first 
briefly recapitulate the MDHs’ formalism using the popular 
stencil computation Gaussian Convolution 2D (conv2d): 
md_hom( *, (++, ++, +,+) ) o view(in, weights) ( p,q 
, r,s )( in[ p+r, q+s ], weights[r,s] ). Here, we first 
use pattern view of MDHs’ formalism to prepare conv2d‘s 
domain-specific input – an (P+4)x(Q+4) input image in and a 
5x5 matrix weights – as array of size PxQxRxS: it contains at 
position p,q,r,s the neighbor r,s of element p,q in image in, 
as well as the neighbor’s corresponding weight. Afterwards, the 
md_hom pattern specifies that elements in the array are summed 
up in dimension R and S (denoted by “+”) and concatenated in 
the two remaining dimensions P and Q (denoted by “++”).  

III. POPULAR STENCILS AS MDHS 

We present new MDH representations for stencils, including 
stencils belonging to four popular classes with very different 
characteristics (dimensionality, transition function, etc.): 

• Conv 2D transposed (conv2d-trans): 

md_hom( *, (++, ++, +,+) ) o view( in, weights 
)( p,q , r,s )( in[ q+s, p+r ], weights[r,s] ) 

• Jacobi 3D (j3d7pt):  

md_hom( j_f, (++,++,++) ) o view( in )( i,j,k 
)( in[i,j,k],…,in[i+2,j+2,k+2] ), where j_f is 
the jacobi transition function 

• Multi-Channel Convolution (MCC): 

md_hom( *, (++,++,++,++,+,+,+) ) o view( in, 
weights )( n,k,p,q,c,r,s )( 
in[ n,c,p+r,q+s], weights[ k,c,r,s] ) 

• 1x1 convolution (map-n):  

md_hom( f, (++,…,++) ) o view( A )( i_1,…,i_n 
)( A[i_1,…,i_n] ), where f is the transition function. 

IV. EXPERIMENTAL RESULTS 

Our preliminary experimental results on Intel Xeon CPU and 
NVIDIA V100 GPU show competitive and often better 
performance than competitors – speedups of md_stencil over:  

• Lift: 1.9x-4.9x on CPU and 1.02x-2.34x on GPU for  
conv2d and j3d7pt on Lift’s own data sets; 

• TVM: 2.75x on GPU for MCC on their own real-world 
data set from deep learning; 

• Artemis: 0.98x-1.07x on GPU for conv2d and j3d7pt;  

• Intel MKL-DNN/NVIDIA cuDNN: 1.3x on CPU and 
3.31x on GPU for MCC on TVM’s real-world data set. 

We achieve better performance than Lift and TVM, because 
MDHs’ code generation mechanism relies on larger 
optimization spaces, which allows more-fine grained code 
optimizations; for a fair comparison, we use for md_stencil the 
same auto-tuning time that Lift uses for stencils – 5h. In contrast 
to Artemis, we target also CPUs – by relying on OpenCL, rather 
than CUDA. Compared to the hand-optimized libraries by Intel 
and NVIDIA, our performance is better, because we rely on 
auto-tuning while the libraries use hand-crafted heuristics for 
optimization – thereby, the libraries avoid the overhead for auto-
tuning which sometimes might not be amortized.


