

md_stencil: High-Performance Stencil Computations
on CPU and GPU

via Multi-Dimensional Homomorphisms
Ari Rasch (supervisor: Sergei Gorlatch), University of Muenster, Germany

I. INTRODUCTION

Stencils are important in popular fields, ranging from
machine learning to physical simulations. Code generation and
optimization for stencils is the focus of many important projects;
however, the increasing heterogeneity in state-of-the-art parallel
systems requires rethinking the traditional approaches which are
usually designed and optimized toward particular architectures
only.

Our poster presents work-in-progress results for md_stencil
– a novel approach, implemented as a library, toward fully
automatic code generation and optimization for stencil
computations targeting different kinds of modern architectures:
multi-core CPU, GPU, etc. Our approach relies on the algebraic
formalism of Multi-Dimensional Homomorphisms (MDH) and
their code generation mechanism in OpenCL [PACT’19]. We
demonstrate how important stencil computations are expressed
as MDHs, which enables md_stencil to internally exploit the
existing code generation and optimization mechanism for
MDHs, while providing to the user a standard, high-level stencil
user interface. Our preliminary experiments are encouraging: we
show for real-world stencil computations that md_stencil
achieves better performance on both CPU and GPU as compared
to state-of-practice hand- and machine-optimized code: Intel
MKL-DNN for CPU and NVIDIA cuDNN for GPU, as well as
the popular approaches Lift [CGO’18], TVM [OSDI’18], and
Artemis [IPDPS’19] on their own stencil examples and data sets.

II. APPROACH

The main challenge addressed by our poster is expressing
important stencil computations in the MDH formalism, which
enables generating and optimizing code for them based on the
MDHs’ existing mechanisms. A general, straightforward MDH
stencil representation is presented in our previous work
[PACT’19]; in contrast, this poster introduces optimized MDH
representations for important classes of stencils. For this, we first
briefly recapitulate the MDHs’ formalism using the popular
stencil computation Gaussian Convolution 2D (conv2d):
md_hom(*, (++, ++, +,+)) o view(in, weights) (p,q
, r,s)(in[p+r, q+s], weights[r,s]). Here, we first
use pattern view of MDHs’ formalism to prepare conv2d‘s
domain-specific input – an (P+4)x(Q+4) input image in and a
5x5 matrix weights – as array of size PxQxRxS: it contains at
position p,q,r,s the neighbor r,s of element p,q in image in,
as well as the neighbor’s corresponding weight. Afterwards, the
md_hom pattern specifies that elements in the array are summed
up in dimension R and S (denoted by “+”) and concatenated in
the two remaining dimensions P and Q (denoted by “++”).

III. POPULAR STENCILS AS MDHS

We present new MDH representations for stencils, including
stencils belonging to four popular classes with very different
characteristics (dimensionality, transition function, etc.):

• Conv 2D transposed (conv2d-trans):

md_hom(*, (++, ++, +,+)) o view(in, weights
)(p,q , r,s)(in[q+s, p+r], weights[r,s])

• Jacobi 3D (j3d7pt):

md_hom(j_f, (++,++,++)) o view(in)(i,j,k
)(in[i,j,k],…,in[i+2,j+2,k+2]), where j_f is
the jacobi transition function

• Multi-Channel Convolution (MCC):

md_hom(*, (++,++,++,++,+,+,+)) o view(in,
weights)(n,k,p,q,c,r,s)(
in[n,c,p+r,q+s], weights[k,c,r,s])

• 1x1 convolution (map-n):

md_hom(f, (++,…,++)) o view(A)(i_1,…,i_n
)(A[i_1,…,i_n]), where f is the transition function.

IV. EXPERIMENTAL RESULTS

Our preliminary experimental results on Intel Xeon CPU and
NVIDIA V100 GPU show competitive and often better
performance than competitors – speedups of md_stencil over:

• Lift: 1.9x-4.9x on CPU and 1.02x-2.34x on GPU for
conv2d and j3d7pt on Lift’s own data sets;

• TVM: 2.75x on GPU for MCC on their own real-world
data set from deep learning;

• Artemis: 0.98x-1.07x on GPU for conv2d and j3d7pt;

• Intel MKL-DNN/NVIDIA cuDNN: 1.3x on CPU and
3.31x on GPU for MCC on TVM’s real-world data set.

We achieve better performance than Lift and TVM, because
MDHs’ code generation mechanism relies on larger
optimization spaces, which allows more-fine grained code
optimizations; for a fair comparison, we use for md_stencil the
same auto-tuning time that Lift uses for stencils – 5h. In contrast
to Artemis, we target also CPUs – by relying on OpenCL, rather
than CUDA. Compared to the hand-optimized libraries by Intel
and NVIDIA, our performance is better, because we rely on
auto-tuning while the libraries use hand-crafted heuristics for
optimization – thereby, the libraries avoid the overhead for auto-
tuning which sometimes might not be amortized.

