
T f(T A_i_k, T B_k_j, T C_i_j)
{
 C_i_j += A_i_k * B_k_j;

 return C_i_j;
}

Ari Rasch and Sergei Gorlatch

Observation

a.rasch@wwu.de

md_poly: A Performance-Portable Polyhedral Compiler
Based on Multi-Dimensional Homomorphisms

•Polyhedral	 approaches	 [1]	 provide	
high	 produc'vity	 →	 automa1cally	
parallelize	sequen1al	program	code	

• The	MDH	approach	[2]	achieves	o9en	
higher	 performance	 than	 polyhedral	
compilers;	 its	 generated	 code	 is	
portable	 over	 different	 architectures	
(e.g.,	GPU	and	CPU).

1. Transforming	sequen1al	C	program	to	polyhedral	model.	

2. Transforming	polyhedral	model	to	MDH	representa8on.	

3. Genera1ng	auto-tunable	OpenCL	code	from	MDH	representa1on.	

4. Auto-tuning	OpenCL	code	for	par1cular	device	and	problem	size.	

5. Execu1ng	auto-tuned	OpenCL	code.	

Approach

Matrix Multiplication in C

for(int i = 0; i < M ; ++i)
 for(int j = 0; i < N ; ++j)
 for(int k = 0; i < K ; ++k)
 C[i][j] += A[i][k] * B[k][j];

‣ Variables with read or read-write access are set as arguments of f.

‣ Variables with write access are declared and zero initialized in f.

‣ Variables with write or read-write access are returned by f.

isl [7]

Polyhedral Model (PM) is “structured”
representation of the sequential code

means: Unknown Combine Operator (UCO) 
→ NO parallelization, BUT tiling, caching, …

<md_hom(f, (++,++,?)) o view(A,B)(i,j,k)(A[i,k], B[k,j])

[7] Verdoolaege, "isl: An Integer Set Library for the Polyhedral Model”, ICMS’10

Transformation: PM → MDH
Hardware

‣ CPU: Intel Xeon E5
‣ GPU: NVIDIA V100

Gaussian Convolution
‣ RW: 1×512×7×7×512
‣ PP: 1x1x4096x4096x1

Matrix Multiplication
‣ RW: M,N,K = 10,500,64
‣ PP: M,N,K = 1024

Gaussian Convolution Matrix Multiplication

Experimental Results

•md_poly vs. PPCG:
• Competitive performance on GPU: 1.01x - 1.32x
• Better performance on CPU: 2.03x - 7.78x

•md_poly vs. Intel MKL/MKL-DNN & NVIDIA cuBLAS/cuDNN:
• Competitive and sometimes better performance: 0.73x - 2.24x

[1] Verdoolaege, Grosser, "Polyhedral Extraction Tool.”, IMPACT’12
[2] Rasch, Schulze, Gorlatch, "Generating Portable High-
Performance Code via Multi-Dimensional Homomorphisms.”,
PACT’19
[3] Rasch, Haidl, Gorlatch, "ATF: A Generic Auto-Tuning
Framework.”, HPCC’17
[4] Rasch, Gorlatch, "ATF: A Generic, Directive-Based Auto-Tuning
Framework.”, CCPE’19
[5] Rasch, Wrodarczyk, Schulze, Gorlatch, ”OCAL: An Abstraction
for Host-Code Programming with OpenCL and CUDA.”, ICPADS’18
[6] Rasch, Bigge, Wrodarczyk, Schulze, Gorlatch. "dOCAL: High-
Level Distributed Programming with OpenCL and CUDA.”, JOS’19

Sequential
C Code

Polyhedral
Model

MDH
Representation

Auto-Tunable
OpenCL Code

CPU-Optimized
OpenCL Code

pet [1] MDH-CG [2]
ATF [3,4]

GPU-Optimized
OpenCL Code

ATF [3,4]① ③ ②

④ GPU

CPU
dOCAL [5,6]

dOCAL [5,6]

⑤

MDH Code GenerationPolyhedral Front End

We aim to combine
both advantages!

