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Abstract

Polyhedral compilers automatically parallelize sequential
programs (e.g., written in the C programming language)
for multi- and many-core architectures, such as CPU and
GPU. However, parallel code generated by state-of-the-art
polyhedral compilers (e.g. PPCG) often lacks performance
portability, because the existing compilers are usually op-
timized toward only a single particular parallel architec-
ture (e.g., GPU). Moreover, even on their target architecture,
polyhedral compilers sometimes tend to fail reaching high
performance, because they often miss important optimiza-
tions, e.g., efficiently exploiting fast memory resources.

We present our work-in-progress results for md_poly —
a novel polyhedral compiler that generates portable high-
performance code from sequential C programs with perfect
loop nests and rectangular iteration spaces. In contrast to
the existing polyhedral compilers, md_poly’s code genera-
tion approach relies on Multi-Dimensional Homomorphisms
(MDHs): we transform the internal program representation
of polyhedral compilers (a.k.a. polyhedral model) automati-
cally to an equivalent MDH representation which is suitable
for generating portable high-performance program code for
CPUs and GPUs. Our preliminary experimental comparison
against PPCG - for benchmarks Gaussian Convolution and
Matrix Multiplication — shows encouraging results: speedups
up to 7x on Intel CPU and 3% on NVIDIA GPU using real-
world input sizes from deep learning.

1 Overview

Figure 2 demonstrate the overview of md_poly’s internal
design. Starting from a sequential C program - currently
limited to C programs with perfect loop nests and rectan-
gular iteration spaces — we first extract in step (D in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Sergei Gorlatch
gorlatch@wwu.de
University of Muenster (Germany)

figure the polyhedral model - this is same step in all C-
based polyhedral compilers — using the Polyhedral Extrac-
tion Tool (pet) [9]. Afterwards, we transform in step 2) the
extracted polyhedral model into an equivalent MDH rep-
resentation [6] — this is a novel transformation step which
interconnects the polyhedral approach with the recent MDH
formalism. The MDH representation is suitable for generat-
ing portable high-performance code [8]: we use the MDHs’
code generator (MDH-CG) [8] in step 3 to transform the
MDH representation into an automatically optimizable (auto-
tunable) OpenCL code; the generated code is then auto-tuned
in step @ for different architectures and input sizes using the
Auto-Tuning Framework (ATF) [7]. We execute the generated
and auto-tuned OpenCL code in step () using the dOCAL
framework [5].

2 Experimental Evaluation

Figure 1 shows the speedup of md_poly’s generated code —
for benchmarks Gaussian Convolution (left) and Matrix Mul-
tiplication (right) — over PPCG and hand-optimized vendor li-
braries (VL). As VLs, we use Intel MKL-DNN [1] and NVIDIA
cuDNN [3] for Gaussian Convolution; for Matrix Multipli-
cation, we use Intel MKL [2] and NVIDIA cuBLAS [4]. We
experiment on both Intel Xeon CPU and NVIDIA V100 GPU.
As input sizes, we use i) real-world sizes (abbreviated with
RW in the figure) from deep learning, and ii) sizes that are
preferable for PPCG (abbreviated with PP), e.g., large pow-
ers of two. We auto-tune both the programs generated by
md_poly and the optimization parameters of PPCG for 48h -
the wall time of our system — using the Auto-Tuning Frame-
work (ATF) [7].
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Figure 1. Speedup (higher is better) of the md_poly-
generated OpenCL code over: i) PPCG, and ii) hand-
optimized vendor libraries (VL).

We observe competitive and often better performance of
md_poly than both PPCG and vendor libraries. As compared
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Figure 2. Overview of md_poly’s internal design.

to PPCG, md_poly’s better performance is because our gen-
erated OpenCL code has more tuning parameters than PPCG,
e.g., parameters for enabling/disabling using OpenCL’s fast
local and private memory [8]; thereby, we enable a more
fine-grained optimization of our generated code. In compar-
ison to vendor libraries, we rely on auto-tuning, while the [7
libraries use hand-crafted heuristics.
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