

(De/Re)-Compositions Expressed Systematically via MDH-Based Schedules

<u>Ari Rasch</u>, Richard Schulze, Denys Shabalin, Anne Elster, Sergei Gorlatch, Mary Hall

Norwegian University of Science and Technology

The MDH(+ATF+HCA) Approaches

Approaches to code *generation* (MDH) & *optimization* (ATF) & *execution* (HCA):

- (1) <u>MDH (*Multi-Dimensional Homomorphisms*):</u> How to generate automatically optimizable (auto-tunable) code?
- (2) <u>ATF (*Auto-Tuning Framework*):</u> How to optimize (auto-tune) code?
- (3) HCA (Host Code Abstraction): How to execute code on (distr.) multi-dev. systems?

Observation

State-of-the-art architectures rely on deep memory & core hierarchies:

Optimizations are required for **both hierarchy kinds** — *memory* and *core* —

to achieve the full performance potential of architectures

Observation

- Modern high performance compilers include: TVM, Halide, …
- These compilers efficiently target modern architectures, by allowing expert users to explicitly express *code optimizations* in form of so-called <u>scheduling programs</u>
- <u>Flaw:</u>

The existing scheduling languages usually rely on a <u>vast set of low-level commands</u>, and the commands have to be <u>combined in complex ways</u> to achieve high performance

We show that this design decision of the existing approaches makes them expressive, but complicates:

- 1. achieving high performance
- 2. guaranteeing safety
- 3. offering auto-tuning
- 4. enabling applicability
- 5. allowing visualization

```
# exploiting fast memory resources for "C":
2
   matmul_local, = s.cache_write([matmul], "local"
        )
3
   matmul_1, matmul_2, matmul_3 = tuple(
        matmul_local.op.axis) + tuple(matmul_local.
        op.reduce_axis)
   SHR_1, REG_1 = s[matmul_local].split(matmul_1,
4
        factor=1)
   # 9 further split commands
5
   s[matmul_local].reorder(BLK_1, BLK_2, DEV_1,
6
        DEV_2, THR_1, THR_2, DEV_3, SHR_3, SHR_1,
        SHR_2, REG_3, REG_1, REG_2)
7
8
   # ... (loop unrolling)
9
10
   # tiling:
   matmul_1, matmul_2, matmul_3 = tuple(matmul.op.
11
        axis) + tuple(matmul.op.reduce_axis)
   THR_1, SHR_REG_1 = s[matmul].split(matmul_1,
12
        factor=1)
13
   # 5 further split commands
   s[matmul].reorder(BLK_1, BLK_2, DEV_1, DEV_2,
14
        THR_1, THR_2, SHR_REG_1, SHR_REG_2)
   s[matmul_local].compute_at(s[matmul], THR_2)
15
16
   # block/thread assignments:
17
18
   BLK_fused = s[matmul].fuse(BLK_1, BLK_2)
19
   s[matmul].bind(BLK_fused, te.thread_axis("
        blockIdx.x"))
20
   # ... (similar to lines 18 and 19)
21
22
   # exploiting fast memory resources for "A":
23
   A_shared = s.cache_read(A, "shared", [
        matmul_local])
   A_shared_ax0, A_shared_ax1 = tuple(A_shared.op.
24
        axis)
   A_shared_ax0_ax1_fused = s[A_shared]. fuse(
25
        A_shared_ax0, A_shared_ax1)
26
   A_shared_ax0_ax1_fused_o,
        A_shared_ax0_ax1_fused_i = s[A_shared].
        split(A_shared_ax0_ax1_fused, factor=1)
   s[A_shared].vectorize(A_shared_ax0_ax1_fused_i)
27
28
   # ...
29
   s[A_shared].compute_at(s[matmul_local], DEV_3)
30
31
   # exploiting fast memory resources for "B":
```

```
32 # ... (analogous to lines 23-29)
```

Listing 3. TVM+Ansor schedule (shortened for brevity) for Matrix Multiplication as used in ResNet-50 network on NVIDIA Ampere GPU

Contribution of this Work

We introduce a <u>new scheduling language</u> for expressing code optimizations in a systematic way

Our systematic language design enables:

- 1. <u>Performance:</u> we can achieve (and often even outperform) the state-of-the-art TVM+Ansor compiler
- 2. Safety: we offer strong error checking, backed by MDH formalism
- 3. <u>Auto-Tuning:</u> any particular optimization decisions can be optionally left for auto-tuning (schedules can be recommended)
- 4. <u>Applicability:</u> our language is used analogously for multiple kinds of programming models (CUDA, OpenMP, OpenCL, ...)
- 5. <u>Visualization</u>: our schedules can be visualized and also be generated from visual inputs

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                             )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
    // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
30
                    ( ^ , ^ ; ^ )
                    (^{,},^{,},^{,})
31
32
33
    // tiling 3
34
    5: (de/re)-comp( ^,^,1 )
                    ( ^ , ^ ; ^ )
35
                    ( ^,^,^ )
36
```

Overview

In this work:

We extend the existing MDH+ATF+HCA pipeline,

by allowing expert users to explicitly express some/all optimizations

via MDH-Based Schedules

Advantages over existing MDH+ATF+HCA:

- 1. <u>Better Optimization</u>: an auto-tuning system might not always make the same high-quality optimization decisions as an expert user
- 2. <u>Faster Auto-Tuning</u>: as some (or even all) optimization decisions are made by the expert user and thus are not left to the auto-tuning system

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
   ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                     ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                             )
5
                     ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
    1: (de/re)-comp( 8,20,^ )
8
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
23
    // utilization of CUDA Shared Memory
24
    3: (de/re)-comp( ^,^,256 )
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
                     ( ^ , ^ ; ^ )
30
                    (^{,},^{,},^{,})
31
32
    // tiling 3
33
    5: (de/re)-comp( ^,^,1 )
34
                     ( ^ , ^ ; ^ )
35
                    ( ^,^,^ )
36
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

Initialization (optional):

- the initial iteration space has a size of 16,1000,2048
- CUDA's Device Memory (DM) is used for A & B input matrices and C output matrix
- computation is performed by a GPU

```
// initialization
1
2
    0: (de/re)-comp( 16,1000,2048 )
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
   // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
30
                    ( ^ , ^ ; ^ )
                    ( ^ , ^ , ^ )
31
32
33
   // tiling 3
   5: (de/re)-comp( ^,^,1 )
34
35
                    ( ^ , ^ ; ^ )
                    ( ^,^,^ )
36
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

Block Parallelization:

- iteration space is split into tiles of size 8,20,2048
- no memory optimizations
- each tile is computed by a CUDA Block (BLK)

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                             )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
                    ( BLK.y, BLK.x, BLK.z )
10
11
    // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
23
    // utilization of CUDA Shared Memory
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
                    ( ^ , ^ ; ^ )
30
                    ( ^ , ^ , ^ )
31
32
33
    // tiling 3
    5: (de/re)-comp( ^,^,1 )
34
35
                    ( ^ , ^ ; ^ )
                    ( ^,^,^ )
36
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

<u>Classical Tiling:</u>

- iteration space is split into tiles of size 4,20,2048
- no memory optimizations
- no parallelization

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                            )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
    // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    (^,^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
    // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
                    ( ^,^ ; ^ )
30
                    ( ^ , ^ , ^ )
31
32
    // tiling 3
33
    5: (de/re)-comp( ^,^,1 )
34
35
                    ( ^ , ^ ; ^ )
                    ( ^,^,^ )
36
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

Thread Parallelization & Register Memory Utilization:

```
– iteration space is split into tiles of size 1,1,2048
```

- CUDA Register Memory (RM) is used for computed intermediate results of C output matrix
- each tile is computed by a CUDA Thread (THR)

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                            )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    (THR.y, THR.x, THR.z)
22
    // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
                    ( ^ , ^ ; ^ )
30
                    ( ^ , ^ , ^ )
31
32
33
    // tiling 3
   5: (de/re)-comp( ^,^,1 )
34
35
                    ( ^ , ^ ; ^ )
36
                    ( ^,^,^ )
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

Shared Memory Utilization:

- iteration space is split into tiles of size 1,1,256
- CUDA Shared Memory (SM) is used for A & B input matrices
- no parallelization

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                             )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
    // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
                    ( ^ , ^ ; ^ )
30
                    ( ^ , ^ , ^ )
31
32
33
    // tiling 3
34
    5: (de/re)-comp( ^,^,1 )
                    ( ^ , ^ ; ^ )
35
                    ( ^,^,^ )
36
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

<u>Classical Tiling:</u>

- iteration space is split in tiles of size
 1,1,2
- no memory optimizations
- no parallelization

```
// initialization
1
    0: (de/re)-comp( 16,1000,2048 )
2
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                             )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
    // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
    // tiling 2
28
    4: (de/re)-comp( ^,^,2 )
29
30
                     (^,^ ; ^ )
31
                    (^{,},^{,},^{,})
32
33
    // tiling 3
    5: (de/re)-comp( ^,^,1 )
34
                    ( ^ , ^ ; ^ )
35
                    ( ^,^,^ )
36
```

- We allow expert users to express optimizations via MDH-Based Schedules
- Our language consists of exactly one primitive which has the following basic structure:

```
(de-)comp( /* sub-problem size */ )
   ( /* memory hierarchy assignments */ )
        ( /* core hierarchy assignments */ )
```

 We illustrate our primitive using the example of Matrix Multiplication on 16x2048 & 2048x1000 matrices (taken from ResNet-50):

<u>Classical Tiling:</u>

- iteration space is split in tiles of size
 1,1,1
- no memory optimizations
- no parallelization

```
// initialization
1
2
    0: (de/re)-comp( 16,1000,2048 )
3
                    ( A:DM[1,2],B:DM[1,2] ;
4
                      C:DM[1,2]
                                             )
5
                    ( GPU.y, GPU.x, GPU.z )
6
7
    // parallelization over CUDA Blocks
8
    1: (de/re)-comp( 8,20,^ )
9
                    ( ^ , ^ ; ^ )
10
                    ( BLK.y, BLK.x, BLK.z )
11
   // tiling 1
12
   6: (de/re)-comp( 4,^,^ )
13
14
                    ( ^ , ^ ; ^ )
15
                    ( FOR.1, FOR.2, FOR.3 )
16
    // parallelization over CUDA Threads &
17
    // utilization of CUDA Register Memory
18
    2: (de/re)-comp( 1,1,^ )
19
20
                    ( ^, ^ ; C:RM[1,2] )
21
                    ( THR.y, THR.x, THR.z )
22
    // utilization of CUDA Shared Memory
23
   3: (de/re)-comp( ^,^,256 )
24
25
                    ( A:SM[1,2],B:SM[1,2] ; ^ )
26
                    ( FOR.2, FOR.3, FOR.1 )
27
28
    // tiling 2
   4: (de/re)-comp( ^,^,2 )
29
                    ( ^ , ^ ; ^ )
30
                    (^{,},^{,},^{,})
31
32
33
   // tiling 3
    5: (de/re)-comp( ^,^,1 )
34
35
                     (^,^ ; ^ )
36
                    ( ^,^,^ )
```

Listing 5. MDH-based schedule for optimizing matrix multiplication on NVIDIA A100 GPU according to the optimization decisions of TVM+Ansor in Listing 3

We show that our systematic language design enables:

- 1. Performance
- 2. Safety
- 3. Auto-Tuning
- 4. Applicability
- 5. Visualization

Deer		DeeN	+ 50		NVIDIA	Ampere GPU	10		Mahd			1.1
Deep	Trai	Resine	et-50 Tofo	ronco	Trai	VGG	-10 Tofo		MOD1	Lenet		
1 Dorfo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Mamni	nant	anna Allamati			farmerah		ication	
		1 26						1 14			ICation	1 Class:
Deep	1.00	I.20 Reside	1.05	2.22	1.00	1.4Z VGG	100	1.14	1.00	1.00		
NVIDIA	0.92	ning —	1.85	ence_	1.22	ning —	1.94	ence	1.81	2.14		
NVIDLA cuBLAS	М <u>С</u> С	1.58	M <u>C</u> C	2.67	MVTDIA M <u>C</u> C	0,93	М <u>С</u> С	1.04	М <u>С</u> С	M <u>C</u> (
TVM+Ansor	1.00	1.26	1.05	2.22	1.00	1.42	-16 1.00	1.14	Mobi	teNet	シ	
		MatMulau	1 05	MətMul		VoltaGPU	1 04	Mə+Mul				• TVM [OSDI'18] is
	0.92	ResNe	et-50		1.22	VGG	-16		1.81 Mobi	leNet		compiler based a
NVLEATINGAS	I.Uurai — Irai	nin g. 58		ren 2e. 67	I. Ownai	nin 0. 93	infe	rende 04	training.	Inference		complier based c
NVIDIA cuDNN	Ø1992	MatMul	114985	Ha triu t	11/022	MatMul	11/10904	MatMul	114981	21/01/4		
NVIDIA CUBLAS	1:00	1.21	1.00	1.79	1 NØØDIA	1.11	1.06	1:89	1:00	1:0×		We use for T
NVIDIA CUDIN	1.21	Reside	1.29		2.80	VGG	3.50		2.32	3.1 🤇		
	MCC	n1ng 1 22	мсс	ence	MYZIDIA	n1ng	MCC	ence	MCC			generated by Ans
NVIDLA CUBLAS	1	1.33	et-50	1.14	1	1.09	1.06	1.04	Mobi	LeNet		0
Learning	1.00 Trai	1.21	Infe	1.79	I.00 Irai		1.00	ence 00	Training	Inference		
NVIDIA cuDNN	1.21	MatMul ResNe	+ <u>1</u> 29	MatMul	2.80	WatMul		MatMul	2:32 Mobi	3:14	•	 We report perfor
	1.00 _ Trai	nin a .33	1.00 —Inte	rende 14	1.00 – Trai	nin a .09	1.06 	rende.04	1.00 Training	1.00 Infe r ence		using the sehe
NVTDTA CUDNN	1MGE1	MatMul	1MCC	MatMul	Meen	MatMul	MCC MCG	MatMul	Mee -	MCC MCC4		using the sche
TVM+Ansor	1.53	1.05	1.14	1.20	1.97	1.14	2.38	1.27	3.01	1.40(itel?	recommended by
N Deep		псэн										
	0.39	ning —	5.07	ence-	1.22	ning —	9.01	ence-	1.05	4.20		
Intel oneMKL	MCC	0.44	MCC	1.09	MCC	0.88	MCC	0.53	MCC	MCC	•	Better performar
TVM+Ansor	15.2		1 11		107		2.28			11		ia haaayaa ayr la
	1.20	0.67	0.90	0.26	1.42	0.76	0.66	0.76	0.56	0.36		is because our la
	0100		5107		1166		5101		1105	1120	tal	
_					Intel Broadwell CPU				→ i) supports <u>mo</u>			
	Troj	ResNet-50			Troining		JG-10 Informed		MOD1	LeNet		data lavout cha
	МСС	MatMul	мсс	MatMul	MCC	MatMul	мсс	MatMul	мсс	MCC		uala layoul cha
<u>I</u>	1 52	1 60	1 20	1 52	1 22	1 00	1 27	1 02	2.42	1 02		
	1.53		1.29 ti-ou	1.53	1.32	1.00	1.2/	1.02	2.42	1.92		► II) has <u>more</u>
Intearprendivin	1.3¢rai	ning -	1.81hfe	rence-	2:9 4 rai	ning -	2.8⊑nfe	rence-	Trainang	In ference		tunina (discuss
	1,20 MCC	MatMyl.	90 MCC	Matmut,		roadwerig CF	U 9 ₁₆ 6	MatMul		9 ₄₀ 36		<u>turning</u> (uiscuss)
TVM+Ansor	<i>Speeu</i>	ирі, ныі 1.60	1.29	1.53	1.32	1.00	1.27	1.02	2,42	91 – 1.92		
	1.45	1-35 M5+M51	1.06	M8+M721	1.63	MS+MD1.co	0.98	MS+M91	1.14	0.52		
Interespective	1.30	I CO	1.81	1.50	2.94		2.85	1.00	1.83	4.47		
Intel oneMKL	1.53	1.45	1.29	1.36	1.32	1.35	1.2/	0.50	2.42	1.92		
Intel oneDNN	4		1						1	A		
<u>ivm+Ansor</u> (LLVM)	1.45	1.35	1.06	0.72	1.63	0.85	0.98	0.79	1.14	0.52		
Intel oneMKL	1.30	1.43	Nash	hiov		mnot	ithb	and	oftan	hidho	norf	ormanco than
TVM+Ansor	1.45	1.35	1.06	0.72	1.63	110-E	0.98	0.79	1.14	9.52	hell	
INTELLØMEMKL							•	TVM-	Ansor			
TVM+Ansor	1.45	1.35	1.06	0.72	1.63	0.85	0.98	0.79	1.14	0.52		

(LLVM)

- [OSDI'18] is a state-of-the-art piler based on schedules
- use for TVM the schedules erated by Ansor [OSDI'20]
- report performance for approach g the schedules automatically mmended by our system
- er performance of our approach ecause our language:
 - supports more optimization (e.g., ta layout changes);
 - has more potential for autoning (discussed on next slides)

OpenCL

 $\{GM\}$

2. <u>Safety:</u> We formally guarantee correctness of our scheduling programs, by checking the formal constraints defined by the MDH formalism

CUDA • Tile Size on lower layer <= Tile Size on upper layer • Tile Size on lower layer <= Tile Size on upper layer • BLKs combine in $\{DM\}$ • WRPs combine in $\{SM, DM\}$ • WGs combine in • THRs combine in {RM, SM, DM} • WIs combine in {SM,GM} Number of THRs limited Number of WIs limited • as well as: • as well as: • BLK/THR. {x, y, z} can be used only once • WG/WI. {1,2,3,...} can be used only once • (de/re)-comp order must be permutation • (de/re)-comp order must be permutation • ... • ...

OpenMP

In related approaches, e.g., Fireiron [PACT'20], it is possible to implement schedules from which incorrect low-level code is generated, without issued error messages

3. Auto-Tuning: our language is designed such that optimizations can be left for auto-tuning (via symbol "?")

- Our language is designed such that <u>any(!)</u> optimization decision can be left for auto-tuning.
- In contrast, the language design of other approaches (such as TVM) support auto-tuning for <u>some</u> <u>optimizations</u> (e.g, choosing tile size values), <u>but not for others</u> (e.g., binding parallelization to inner/outer tiles, using fast memory regions or not, etc).

4. Applicability: our language is used similarly for different kinds of programming models

Our system can be used/extended for C-based programming models targeting arbitrarily deep memory & core hierarchies

Language Features ^ benutzen, wie in schedules auch?

5. Visualization: our schedules can be visualized & also be generated from visual inputs

Related Work

- Popular scheduling approaches include: TVM [OSDI'18], Halide [PLDI'13], Elevate [ICFP'20], DaCe [SC'19], Tiramisu [CGO'19], CUDA-CHiLL [TACO'13], Fireiron [PACT'20], Distal [PLDI'22], and LoopStack [arXiv'22]
- All these approaches have in common that their scheduling languages rely on fine-grained low-level primitives which are expressive but complex to use, often even for experts
- Our language design allows combining the following advantages over the related work:
 - 1. <u>Performance:</u> competitive to TVM and often higher
 - 2. Safety: backed by MDH formalism
 - 3. Auto-Tuning: any optimization decision can be optionally left for auto-tuning
 - 4. <u>Applicability:</u> our language is used similarly for multiple kinds of programming models
 - 5. **<u>Visualization</u>**: our schedules can be visualized and also be generated from visual inputs

Conclusion & Future Work

Conclusion:

- We introduce a new scheduling language, based on the formalism of Multi-Dimensional Homomorphisms (MDH)
- The goal of our language design is to express (de/re)-compositions of computations in a systematic, structured way to simplify the complex and error-prone optimization process for performance experts
- Our language design enables: 1) *Performance*, 2) *Safety*, 3) Auto-Tuning, 4) *Applicability*, and 5) *Visualization*

Future Work:

- Computations consisting of multiple loop nests (currently limited to individual nests)
- Targeting domain-specific hardware extensions, e.g., NVIDIA Tensor Cores
- Targeting further models, e.g., LLVM to benefit from assembly-level optimizations